ISRAEL JOURNAL OF MATHEMATICS, Vol. 62, No. 3, 1988

WAS SIERPINSKI RIGHT? I

BY

SAHARON SHELAH!
Institute of Mathematics and Computer Science,
The Hebrew University of Jerusalem, Jerusalem, Israel,
Department of EECS and Mathematics,
University of Michigan, Ann Arbor, MI 48109-1109, USA;
Department of Mathematics and Statistics,
Simon Fraser University, Burnaby, B.C., Canada; and
Mathematics Department, Rutgers University, New Brunswick, New Jersey, USA

ABSTRACT
Aroused by Todorcevic’s breakthrough we prove here some complementary
consistency results, mainly 2% — [R,]3. We also get some generalization of his
theorem to, e.g., A1 #{4]}, for A regular not w-Mahlo.

Introduction

Todorcevic had stated that the important open partition relations are
Ry = [RJR, or R, —~[(Ry, RS, 2%—[R,]; and 2% —[2%, [2%; 2%]]. Certainly
the first got more attention (maybe because of its relation to many other
problems on R, see e.g. [KV]). Lately he made a breakthrough proving in ZFC
XX J}; Todorcevic had an older result in the direction of the consistency
of 2R—[2%, [2%; 2%]])% if we add to V any number of Sacks reals with
countable support (product, not iteration) then (if for simplicity V satisfies
G.CH)R,—=(R,, [R,, R D%

We prove here (in 1.1) the following: let V satisfy G.C.H. (for simplicity),
Ro<k <A =y, A=k*3 K successor of regular, we can blow up 2% to y
without collapsing cardinals by a forcing so that still A —(4, [x; k])*. So the
restriction to R, is removed. In fact we can replace X, by any regular x« (using
u-complete forcing). The proof relies on Todorcevic’s and is influenced by
order used by Gitik in {G] (for an iteration).

t The author thanks the NSF and N.S.E.R.C. for partially supporting the research. Preliminary
versions of §3 and §2 were circulated in November 84 and February *85, respectively.
Received March 18, 1987 and in revised form January 12, 1988
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We could have still thought that Sierpinski’s result 2%-A[R,]3, Galvin and
Shelah’s [GS] result 2%-A[2%])% and Todorcevic’s result R,#[R,]} can be
strengthened to 2%+A[R, 3. This (2% —[R,3?) is quite an old problem of Erdés
and Hajnal [EH}; for a discussion of its importance see e.g. Erdos [E] and I11 21
of [MU]. However, our main result is (in §2) the consistency with ZFC of
2% —[R,]2. More elaborately, if 4 is a strongly inaccessible Erdds, when u = R,
measurable otherwise; and A > u = u<*, then for some u-complete forcing not
collapsing any cardinal, in V¥, 2 =1 and A —[u]} (in fact A —[u)?; for
a <u) (see 2.1). In fact we can make 2* larger. Though settling the original
problem a host has arisen: minimal cases are:

(1) R,—[R,]3?

(2) 25— R},

(3) 2%—[R,)}?

(4) A —[A]}, not weakly compact?

Galvin had conjectured the consistency of {X,—[R]in:n <w} for a
suitable h: w = w.!

Lately Todorcevic made a breakthrough in partition relations proving
R, 7[R,k He presented the proof in the MAMLS conference, Nov. ’84. He
told me then that he has another proof and he is working on the “family of
uncountable linear ordered has no finite bases”. He knew A+ —[A*]2 for A
regular.

Our proof for (A), (B), (C) below (i.e. §3) continues the work of Todorcevic
[T]). We use simpler coloring, as he used coloring on @, which uses more
information which was relevant e.g. to a new construction of uncountable
linear order I whose square is the union of R, chains (this was his starting
point). Such orders were first constructed in [Sh].

We prove, €.8.,

(A) If Ais regular > R, S C A stationary with no initial segment stationary,

then A-#[{A]? (e.g. A Mahlo, not 2-Mahlo or succesor of regular) (see 3.1).

B) f Vn<w Im, k(Ym’'>m)R,+[R ] (i.e. various instances of the

Chang conjecture fail) [equivalently A,V,R,—[R,]<”] then
Nw+l+[xw+l]§@ﬂ~
Todorcevic had proved A*-A[A %), if (Vu <A)[p* <A].
(C) Suppose 4 is regular > R,, A-#[A]%, (hence A is w-Mahlo). Then

t For further results, solving some of the problems, from Spring 86, see [Sh 2], [Sh 3] and,
better, [Sh 4], [Sh 5], [Sh 6], and more applications of §3 in [Sh 7].
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(*) If (Cs:0 <A, J inaccessible) is such that C; is a closed unbounded
subset of  and C* C 4 is closed unbounded, then there is a closed
unbounded set C* C C* C A of limit ordinals such that for some J; < 4,
a; € C,, for i <A we have that M), ,(Cj, U [a;, 1)) contains a club of A
[using instances of the Chang conjecture we can weaken the hypothesis
to A —[A]2 for suitable x].

REMARKS. (1) On the hypothesis of (C) see 3.7, 3.11.
(2) In fact, in the cases we get A#[A]2 we get also A4, 4, A]L".

Consequences of (C) are:
(D) (1) if A > R, is Mahlo but not w-Mahlo, then A-A[A]2.
(2) If A > R, is regular, S; C A stationary for i < A but for no inaccess-
ible A’ <2, (Vi <A’) (S; N A’ is stationary), then A-[A ]k,
(3) If A —[11%, (A > R, regular), then A is weakly compact in L.
(4) If 4 is successor or singular, then A+[AJX,
(5) Rups 1 FRurs Ti

§1. On the consistency of A — (4, [k; x])

1.1. THEOREM. Suppose pu <k <A are regular cardinals, p =u<*, k =
K<, A=A%%, A= 3k)" and (VO <k)[6<* <k]. Then for some forcing
notion P:

(1) |P| =A.

@ [Fe*2 =2".

(3) Fr“A— @, [x; k])” (see Definition 1.2 below) (hence for Kk, <k:

IFe “A = (4, [x1, &1])7).

(4) Forcing by P does not collapse any cardinal nor change a cofinality and P

is y-complete.

1.2. DEFINITION. (1) A = (uy, [i2; 12)) holds iff for every 2-place function
¢ from A to 8 + 1, at least one of the following hold:
(i) thereis A C A, (A | = u, such that, on A4, c is constantly zero;
(i1) there are o;, B; <A for i <u,, pairwise distinct, and {, 0 < { =< 0 such
that for i <j <u,, (e, B;)=¢.
If 8 = 1 we omit it.
(2) A= (u,, [4y, 13]) holds iff, for every 2-place function ¢ from Ato 6 + 1,
at least one of the following holds:
(i) there is A C 4, |4| =y, such that, on the set 4, the function c is
constantly zero;
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(ii) there are o; <A (for i <p,) and 8, <A (j <us), all pairwise distinct,
and {, 0 <{ = 6 such that for i <pu,, j <u; we have c(o;, ;) = {.
ProoF. Let

Q = {g: gafunction from some a <puto {0, 1}}

order: inclusion

P = {f: fafunction with domain a subset of 1 of
power <Kk, fi)EQ}

stipulating that when i € Dom,, f(i) = & € Q the order on P is:

Pk f = f; ifffor each i EDom f,, fi(i) = (i) (in Q)
and {i EDom f; : fi(i) # f3(i)} has power <pu.

We say f; <, f, (f; a pure extension of f)) if
[{ €Dom f,= fi(i) = (D).

EXPLANATION. Note that (P, <,,) is really adding A Cohen subsets to «;
and ({f€P:|Dom f| <u}, =) is really adding A Cohen subsets to x. The
point is that ¢ extends p if:

(a) ¢ gives more information,

(b) outside Dom p it gives < k new pieces of information,

(c) inside Dom p it gives < u additional pieces of information.

A. Fact. Pis u-complete.

B. Fact. P satisfies the x*-c.c.
By the A-system argument

C. Fact. |P|=4i<"

D. FACT. | “% =4".
Standard:

E. Fact. If 0 is regular cardinal, u* =0 <« then ||-“6 is a regular
cardinal”,

PROOF. Suppose pEP, x <0, and p |l “cf 8 = x”. So there are P-names
{; (for i < y) such that:

P |F» “each {; is an ordinal <6 and 6 = sup;, ({,)”.
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We define by induction on a = u, p,€ P such that:
(a) for f <a, pp <y P, and py= p;
(b) if « is limit, Dom p, = U, ., Dom p,,

Po(i) = ps(i) for every B < a large enough;
() ifi<y,(<6,9€EP,pp.1 =4,

{j€EDom pg.: pg+1() # q()} CDom py and ¢ |l =&

then ¢ I (Dom pg 1) |Fe “9 ="

This is enough: for each £ <8, necessarily, as p |- “0 = sup;, ({;)” (and
p =Dy = p,) there are ¢*€EP, satisfying p, = ¢°, an ordinal { [{]'20 and
i(&) < x such that

g |Fr 6> gi(C) =({[£]1>¢.

As {i€Dom(p,): p,(i) # ¢°(i)} has power < it is included in Dom pg s for
some (&) <u. By (c) above

q* t Dom( Pay+1) ke “Gicey = SLET

hence ¢° I Dom( p,) [Fr “iey = {[£]7. As the number of i(£) is x < 6, 6 regular
(in V) there is a set SC @, |S| =0 such that i({)=i(x) for £ES and
{[&I<[&lwhen & €S, GES, { <&, Let

u; = {j €Dom( p,) : ¢°(i) # p,(i)},
s0 |ug] <p. As |{¢*(j): EES}| = u for each j EDom( p,) and as
lug| <p=p~r<|{£:{<0}]

for some &<{ in S, ¢°M(ue Nuy) =gt (4 Nu;) hence ¢°!Dom(p,),
¢* ! Dom( p,) are compatible and (¢* ;) U (¢° I (Dom p, — u;)) is a common
upper bound; but they force different values on {;,), contradiction.

We still have to carry the definition of the~p,’s. For a =0, a limit no
problem. For a =g + 1, let {(ig, r;) : £ <&(*)} list all pairs (i, r), i an ordinal
<X, r€P,Dom rasubset of Dom p; of power <. The number of Dom r; is
<Kk as (VO <k)0<* <k) and |Dom p;| <k. For each such domain the
number of conditions is = x~* =u <k. Lastly the number of values of i is
x <0 =k. So £(») <x. We now define by induction on ¢ < &é(*) a condition
P3¢ EP such that: pgo= py, (V{ <&)pp; e Ppg for Elimit ppe = Up o pp ¢
and for each & <{(*) if there is q, pss = qEP, q forces a value for §,~¢,
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g ! (Dom r;) =r; and [ Vi EDom( ps ;) — Dom(r;)] [ ps (i) = q(i)] then ps ¢,
satisfies this.

Now let p, = pg4y o Ds.zs) 1t 18 as required.

F. FAcT. Suppose 4, is regular, A,— ()2, 4,> 0, and A, = [2<%]* (or just
A, is regular and (Vo <A))[6<%2 < A4]. Then |Fp4,—(4,, [K; ko).

PrOOF. Let d be a P-name of a 2-place function from 4, to 6, p,E€P. For
a<p <A, choose p,s, Py=p,sEP such that for some y,,€EH,
Dag IFp “d(e, B)=v,5”, and if possible, ¥,z #0. So y,z =0 implies
Dol “dla, B) = Vo

Let Dom p, 5 = {i,5({): { <{, 5 <x} where i,4({) increases with {.

We define a 3-place function H with domain 4, : H(e, 8, y) is a sequence
consisting of

@ Lup,

@) ({0 ¢ (L) = iay(L)),

(i) (L Pupliap(ON) 1L <Lup)s

@) (G0 &) 2 g ) = ig (0,

) ({8, Paliap (D) 1 £ <L),

(vi) {(Gi, &2 2 o p(81) = ip,( 4]

So we have two colorings: ¥, 4 (two place with € colors) and H (three place with
Kk colors as k = k=%).

As A, =[2<%]", there is a subset 4 of 4,, such that: either

(I) .5 =0foreverya<ffrom A, and [4]| =4,
or

(II) 14| = 4,, 4 has order type 4,, and such that:

(1) w5 # 0 for a <p from 4,
(2) fora<p <yfromA, ¥, = V.,
3) fora;<a,<p <yfrom A, H(a,, a3, B) = H(a,, a, 7).

So on A we can define a 2-place function H’,

H(a,f)=H(a,B,y) foreveryy€EA—(a+p+1).

If (I) holds, p, |l» “d is constantly O on A” and we finish. So we shall assume
(II). Note that y, (e <f, a€A, BEA) depends on « only. So as 1,> 0 is
regular w.L.o.g. for some v, (0 <y =0), v, =y for every a <f from 4. As
A,— (x*)2, there is a subset B of 4 of cardinality (and order type) k *, on which
H’ is constant.

So, the function H is constant on B. Hence for every a€B (by (ii))
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(Dom p,p:a<BEB) form a A-system, and let its “heart” be b,, and let
o= Dap ' b, for a <BEB (the choice of B is immaterial). So for each
a€B: (Dom p,; — b,: a <BE€B) are pairwise disjoint.

As |B| =k™, for some C C B, C has cardinality and order types x*, and
(r,:a€C) form a A-system, i.e. for some r*,

r* =r,l (Dom r*),
(Dom r, — Dom r*: a € C) are pairwise disjoint.

We now define in V? by induction on { <k™ ordinals o;, 8; (pairwise
distinct) from C as follows:
(i) a;€C is minimal such that r, EGrand &, > U, ., (; U B)),
(ii) B, €C is minimal such that p, 5 € G, and §; > q; for every j <.
If a;, B; are defined for every i <k, then as clearly in V* d(a;, B;) = v for
J =i (as p,,p force this) we have finished. So it suffices to show

r* |kp “a;, B are defined for every i <k”.

We have two cases (according to whether the first to be undefined is an o, 0r §;).

Suppose first r* = r* €P,and r* || “o; is not defined (but o;, §; are defined
for j <i)”; w.lo.g. for j <i, r, < r* and for j, <j, </, Puyp, = rt.

But Dom r, — Dom r* (a€C — U, _,(e; U §))) are pairwise disjoint and
their number is k* (really x suffices).

So for some o, U, ;(e;UB)<aE€EC, Domr,—Dom r* is disjoint to
Domr*. Asr,! (Dom r*)=r* C rt, clearly r*, r, are compatible:

def
rt+t £ r* Ur,H(Domr, — Dom r*)

is an upper bound but r** || “« is a good candiate for o;”. Hence «;is defined.

Contradiction. Suppose secondly r* =r*€P and r* ||, “B; is not defined
but o; (j = i) B;(j <i) are defined”. W.l.o.g. for j =i we have r,, = r™ and for
h<jh<iwehavep, 5 = rt.

For each j =i, (Dom p, ; —Domr,:a; <BEC) are pairwise disjoint,
hence for all except <k of the ordinals 8 €C — («; + 1) we have: Dom p, , —
Dom r,, is disjoint to Dom r*. As |C — (&; + 1)| 2, forsome BE€C, > a;,
and for every j=i, Domp,; —Domr, is disjoint to Domr*. As
PostDomr, =r, =r, =<r*, similarly to the first case r*, p, , are com-
patible.

We want to show that the set {r*} U { p, 5 :j = i} has an upper bound in P.
By the definition of P it suffices to show that any two are compatible. As we
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have shown that r*, p, , are compatible when j = i, it is enough to show that
Doy 4> Deyoyp aT€ cOmpatible when j(1) <j(2) = i. This follows as the function H

is constant on the set C C ,, using the definition of H.

By the definition of P, thereis r**€Psuch that r* =r**,p, , =r*™ for
Jj=i. Clearly r** |- “B is a good candidate for §; hence B, is defined”.
Contradiction.

§2. On the consistency of 2% — [R,]3

2.1. THEOREM. Suppose u =pu<* <A =y and A is a strongly inaccessible
measurable cardinal > u (or A = (w,);°%, A minimal).

Then there is a forcing notion P such that:

(a) P is u-complete,

B 1P| =1,

W) e “A—[u*B,
(8) P collapses no cardinal = A, changes no cofinality, adds no sequence of

ordinals of length <u and | “2* = x”.

2.1A. REMARK. At the urging of the referee we concentrate here on the
case 4 = R,, A = x the first measurable.

2.1B. REMARK. (1) See 2.7 for the improvement in the hypothesis on 4.
(2) In (y) we can get A —>[u*]3; for & <pu. For this in (6) below d is a
function from A to §,, §, <u and ¢} <@,.

ProOF. We try to define by inductionon a < x:
Q=(P,0::i<a,j=a) and eX€{0,1}
as follows:
(1) P;is a forcing notion and satisfying the R;-c.c.

(2) Q;is a P;-name of a forcing notion of power X, (with minimal element

& or ).
(3) Qs a finite support iteration, i.e.

P; = {f: fis a function with domain a finite subset of j and
for i EDom( f), f(i) is a P;-name, (f1 i) ||, “f()EQ”
and f(i)E H(2%)*) (to avoid classes)} )

and

Pk “f=g"iffforeachi€Dam f, g i ||, “f(i) = g(i).
WeletforfE€EP;, i <j, i €Dom(f): f(i)= & or f(i) = &,. Note that for the



Vol. 62, 1988 WAS SIERPINSKI RIGHT? I 363

Q, we are using, the set P/ = { fEP;: f(i)E V (i.e. not just forced to be in V' but
is specific element)} is a dense subset of P;.
(4) e¥ is an ordinal < 2 such that [e¥ = 1= cf(a) = X,] (it just tells us what
we are doing in Q,).
(5) Ife*=0then ~

Q.= {f: fa function from some & <X, to {0, 1}}

ordered by being an end-extension.

(6) If e*=1 then for some d,, e, e, I and N, I
(,1€1 L (1 TR, 1] =2}, |s| = |]) and rg, 62({ <R,) the follow-
ing holds:

(i) aisan ordinal of cofinality R, d, is a P,-name of a partial function from
A10 {0, 1, 2}, C, a closed unbounded subset of «, and for €C,, d, I Bis
a Pg-name and e, e? are ordinals < 3.

(i) If SEI then N < (HQ2*)*,€), NeNACa, R, CN:, |N:| =Ry,
R, € N¢ (remember that | V| is the universe of the model N, so || N || is
its cardinality) and C, N N* is unbounded in a« N N2, U,e/(A N N?) is
in Dom 4, (i.e. on all pairs from each A N NY),

tel

[,BEN;'Ae*= 1= U N{’QN;’],

((B,d,'B):BEC, N N} C N2
and

{(Pjagi:jéﬂ’i<ﬂ):ﬂecan]v:‘!}gm'

(iti) If s, t €1 then N* N\ N = N%,,.

@iv) If |s| = |t]|, then Ag, is an isomorphism from N? onto N;, mapping
{(B,d.1B):BEC, NN} onto  {(B,d.'B):BEC,NN'} and
{(P,Qi:j=B, i<B):BEN;NC,} onto {(F;, Q1) =B, i<B)
BEN; N C,}, hy, is the identity on Ny, it extends Aimax)), (masy; and
P rminis)),mintyy 20 Ay, is the identity when s =t and h,, = A, '

(v) For {<R,, #EN; N4 is an ordinal, [{<{<R,=60 <],
[ # &= 0f €Niyl and 1 €P. N Niyy, by ((r8) =18, b, 0(0%) =
0z

(vi) If r§ = pENy;; N P, then there are py, p, such that: p = p ENy N P,
P = DENy NP, and if { <¢ <pu* then for some ¢,  ENf ;) N P,
fori=1,2,

ab“d.E)=¢” gy Nna)=p, ¢ (N Na)=h6(ps-)
(el, 2 are ordinals < 3).
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(vii) For each o for which e¢* =1
(a) Min(N?C,ﬂ - N%) = Mln(N?c} — NS) for ( < é < R],
(b) (Min(N{;, — Ng):{ <u™) is increasing and converges to a,
(©) foreach {, (Min(Nf;y) — Nfyy) : { <& <R,) is increasing and con-
verges 10 a, hence
dif p<a eF=1=ef then for some {(*)<R;
U{(Ne —=N5)NA: €It #5 =t N {(x)}, is disjoint to

U{Nf—NOYNA:tELt#5=1tN (@)

(vii)) Q,={w C X, :|w| <u, and for every {Ew, r¢ EGp, and for every
f < ¢from w there is g ENfy ;) N P, N Gp, such that g ||, “d, (6, & )E
{e!, €2} and there is ¢'ENy g N P,, ¢’ |1, “d (&, &)E (e, &) and
q'M (A N Ngy) = hy 6@ N N A), and gt (A NNy =
hioi6(@’ 1 (A N Ny)) and these elements are in P,}.
Qa is ordered by inclusion.

2.2. NotaTioN. IfTCP,, |T| <R, we define ¢ = UT it is a function
with domain a & U,er Dom p and for each y€a, g(7) = U, er p(7).

In general g need not be in P, (e.g. maybe for some p,, p,EP and y,
n(P) U b EQ,).

2.2A. FACT. Suppose:
(1) Tc P, |T'| <u and for every p,, p,€I" and y EDom p, N Dom p, the
following holds:
@) Uert9) ke, “pi(») = po(y) in Q,” or
(i) Uerr '9) - “p(») = 21(y) in Q7
then UT EP, is the least upper bound of T.
(2) We can of course omit in (i), (ii) above “ U,y r I y™: this is particularly
useful when I' C P/, (P, — defined above).
(3) Wecan add in (1):
or
(i) Uerrty ke, “n(@) U ()EQ,".

2.3. NOoTATION. P% = {p€P,: for fEDom p, p(f) is an actual subset of
R, (or function from X, to 2), not just a Ps;-name, and if ef =1, { <¢,
{ € p(B), $E p(B), then for some r ENf; sy N P, r = p ' B (so p forces that r
will belong to the generic subset of pg) and 7 |15, “ds({, £)E{¢, €5 }” and there
is r’€P% N Nf;;, (note that generally r is incompatible with p(B)!) such that:
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“riFnd((,OE(G. 61 Mo T N)=rT Ny, Aoyt Niy) =
r't Nfg ). Note that

@ {(B,P3):PEC,NN}C N wheneX=1,5€I,

(i) r U (pt(Nf)) U (p ! Nf,) can serve instead r above.

2.4. Fact. (1)Ife*=1,peP’ t€l, thenp! NP EN: N P~.
(2) P” is a dense subset of P,.

PrOOF. Note that if § EN?, then (8 N U, N¥) C Ne.
2.5. FAcT. P, satisfies the R,-c.c.

By well-known theorems, the only problematic case is o+ 1, e¥ = 1. Let
a= U, W, (War: ¢ <R,) be increasing continuous, ¥, ; < a. So suppose
(pr:{ <N,)isgiven, p,EP, ;. By 2.42) wlo.g p, EP’ ;. Let

wy = {i <R,:i€ p;(a) or dom( p;) is not disjoint to N§;, — Ng, or
for some ¢ <R, dom( p;) is not disjoint to N{; ;, — N, U Nj;, ).

Clearly w, is a subset of R, of cardinality <RX,, (dom p;) N « a subset of a of
cardinality <N, Hence by the Fodor lemma, for some stationary S C
{6 <R, :cfd = R,} the following holds:

(VE,EESHL #E=w; N w; =w*),

Min(w; —w*)= (.

As (dom p;) N « is a finite subset of «, by the Fodor lemma w.1.0.g. for some
B(*) <aforevery { €S: (domp;) Ny, S B(*),and fori <{,(dom p;) NaC
Yo and (Nji oy — Niy) Ny, =& fori <{.

Let w, — w* = {¢,({) : < 6°} (increasing with o), so 6 is finite and w.l.0.g.
for (€S, o* =0o*. Let M, = U{Ng,;, :i,jEw,} (so M, is normally not an
elementary submodel of (H(x),E)).

Let {(*) be the minimal element of S.

Let us define for { €S, pf as p; I (M; N «). (a, b and ¢ below serve just to
denote a variant of p;.) Now p¢ € P’ as: it is a function, with domain a finite
subset of a, and for each i € Dom p¢, p{(i) is a set or function of the right kind.
But why is i EDom pf ane¥ =1=pf i |l p{(i)EQ;? By (viii) of (6) above
and “[BEN? nef = 1= U, Nf C N2]” from (ii) of (6) above.

Next we define a condition p € P7; we define it by demanding Dom pf is a
subset of « N M, and

(* if

@) i(1), i) E Wy j(1),j(Q)EW,, and for [ = 1,2
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[(HEWE) A i) =j(D]
VI EWewy — w*) A(F0)E() = &(L)) AJ(D) = ao({)]

'~ then
®) himienuoePE T Niaua) = PE T Njaey-
Why is pf €P”? By 2.2A. [Explanation: p¢ is pf mapped to a condition with
domain C M, as far as is feasible.]

Clearly for some B(1)<a, B(1)>B(*), {pf: {ES} C P%, hence by the
induction hypothesis, for some {; < {, from S, for some g € P%,,, p?, pt, = 4.
Again we can show that g I M, € P’,,. (Note that we are strongly using “each
Q, has power =X,”.)

" Let for { €S, p§ €EP’, be defined by the following: dom( p{) C a N M; and

(**) ifi(1), i(2), j(1), j(2) satisfies (a) above then

R (@ T Niwaen) = PE T Njayien-
To get the desired upper bound of p;, p;, we shall apply 2.2A to

def

F=F0UFIUFZUF3

where the T, are defined below.
Let o= { by, Pe» 4 PG> PG}
[Explanation: Note that (UIg) I « € P, so the rest are designed to force that
P (@) U p (o) is a condition in Q,, mainly: for (1), o(2) <o* we want that
d.162 100> Ooxea) 1 €f o1 6. Now I, I, T will deal respectively with the cases
a(1) < (2), 6(1)> 6(2) and (1) = 0(2).]
Let 't = {Aecismakioleakineat e Pl T ktaeetcn) - 0(1) <0(2) <a*}.
Let for 0(2) < 06(1) < 6%, 4o2),000E Nieortnaaxcy N P be such that:
(A) @) Aot @o@a) T Niaaren) = Pi T Newpioys
(0) A mmen) (o0 T Nieicin) = PE T Nigrcans
(©) doyom e, B uits i) E {6, &)
(exist; see 2.3, in particular (ii)).
We let

Iy = {h ottt izt ieas e Gomom) : 0(2) <a(1) <a*}.

Lastly, for each o <g*, there is g, E Nj, (¢, .(c)» Such that (it exists by the
demands on the r#’s — see (6)(vi)):
(B) (@) 4, €PN Nieneitans
(b) P Niewey Z 4o
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(C) pfz erﬂn(Cz)} =4
(d) g, IF 4Gy Turn) E {e, eﬁ}
Let
I'i={g,:0<o*}.

Now I', U I, UT, U T satisfies the assumptions of 2.2A (the point is that
N N N¢ = N2, for s, t €), so, as said above, we finish.
To finish the proof of 2.1 we need (note that |f-p “2% = A” is trivial)

2.6. CLAIM. |Fp “A—[R, 13"

Proor. For this is suffices that:

(**x) for every P,-name ¢ of a function from 4 to {0, 1, 2} and p,EP, for
some o, and p,, dMa=d, po < pEP,,;and e¥ =1 and p, |}, “Go.
is unbounded in &,”.

A way to guarantee this is to use a preliminary forcing R, the conditions are
sequences (P;, 0;: i <a,j = a) as required above, the order being an initial
segment. This is a A-complete forcing of power 4 <*.

By the following Claim 2.8 the generic (P;, Q,- (i <A,j = A1) is as required,
ie [p “A—[RB.

Why? Suppose ¢ is an R-name of a P,-name, r,€R, r, forces: p, € P, forces
(|F») d forms a counter example. We can choose by induction on g <A,
rs€R, such that A, s r, < ry and r; forces a value g’ to gt 8. Let

rﬁ=(P,», thiéaﬂ,]<aﬂ).

So the iteration Q = (P;, Q:i=A,j<4) is uniquely defined and is as
required in (1)-(6). Let d be U, _; d* and apply 2.7 on (H(2*)*),E€,4, 0, d)
(more exactly — expand by Skolem functions and find an elementary sub-
model of power A which includes {i:i <A1}). So we can find ¢ such that
cfd =R, Apgcsa5 <9, for a club of a <4, d ' a is a P,-name, and there are
(N;:s C cf(d) finite), h,,as in 2.7. Then we can easily find the r# (i.e. 7§) above
Do Which is wlog in Ng.
Let (,: a <R,) be increasingly continuous, U, .x ¥, =a and for s€/

Nsa = N(w(:ce.v))
05 = Min[(N,,,, — Ng) N o],

hSy = Ry cesy v ceny-

This choice defines a forcing notion Q in V-, Now
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Qa= (Pi, Q]'.} §a’j<a>
can be continued by choosing Q, as above and we get r*. But if r* € Gy, then
the iteration in V[Gy] satisfies (***) above. So we finish.

2.7. CLAIM. Suppose (a) A is measurable > u or (b) u = R,, 4 the first
cardinal satisfying A = (w))5,”.

If M is an algebra with u (finitary) operations and universe A, then the set of
ordinals d <4, satisfying the following, is closed unbounded or stationary
C{d<i:cf(@)=p*):

(*) there are N,(s€1 « {s Ccf(d):|s| <Ro}, 6;({ <)) such that:

(1) For s€I, N, is a bounded subset of d, ||N;| =u* including

{i:i<pu*}).
(2) Fors,t€I, N5, =N; N N,.
(3) Fors,t€E€I, |s| = |t]| there is an order preserving isomorphism A,

from N, onto N,.

(4 Ifs=tNa,s€I, tEI, then N,is an initial segment of N,.

(5) (Min(N;y — Ny): { <cf(d)) increases and converges to J, and even
for s C cf(8), 0 = |s| <Ry, (Min(N, (¢, — N;) : max(s) < { <cf(d))
increases and converges to d.

(6) If |5,] = |5,] = |31, |8/ = mthen hy ;= h,, o hg .

™ hs,t = ht:vl .

8) hy, ' Ny =id.

(9) If g is an order preserving function from sonto ¢t,s€I,t€1,5, Cs,
t,=g"(s), then h, , C h,,.

(10) 6, = Min(N,; — N,).

(11) We can allow the functions to have <y places if u<+ =u*.

ReMARK. For 4 measurable we really can have § = 4.
Proor. Easy (or see [Sh 3)).

2.8. THEOREM. Assume jt =u<* <A =y, Ais the first strongly inaccessible
Erdos when p = R, measurable otherwise 2 > p and y = x* > 4.
Then we can get the conclusion of 2.1.

We delay this to part II.
2.9. THEOREM. In 2.1 wecan add () ifu = Ry : |Fp “MAy,” and if p > Ry:

|- “if Q is a forcing notion of cardinality u* , satisfying *[u],
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and D; C Q is dense for i <i(*)<cfy, then there is a directed
G C Q not disjoint to any D;”.

Proor. Same for u = R; for u > R, see [Sh 2].

2.10. DiscussioN. We can replace, in 2.9, R, by u* > R, (except in 2.1 (y))
but then we need few changes — || Ny || = u*, {i:i = u*} C N¢,and soin 2.7
we also consider u* instead of 4.

§3. Generalizations of the Todorcevic Theorem

3.1. THEOREM. Suppose A is regular > R,, S C A a stationary set, not
reflected. Then A-+[A)}.

ExampPLEs. R, successor of regular, (o + 1)-Mahlo not (« + 2)-Mahlo are
such cardinals. If 0* does not exist there are lots of cardinals with such S (e.g.,
any successor of singular cardinals).

Proor. Foreachi <4, i # 0 we choose a set C; C i such that:
(1) if i is a successor then C; = {i — 1, 0},
(2) ifiislimit, let C; be a closed unbounded subset of i, disjoint to S, 0€ C;,
successors in C; are successors in 4.
Note: if 0ES,0<i<AthendEC,=i=46+1.
We can partition S to A pairwise disjoint stationary subsets (of 1) S; (£ <4)
$08 = U;; S,
Now we define the coloring: a 2-place function d from A to A:
For any a < § define a y;* (8, ), 7, (B, «) by induction on /;
@) 7' (B, )=8, 75 (B, 2)=0,
(b) if " (B, o) is defined and > alet y/% (B, a) be the first member of C 4.,
which is = «, and y;3 (8, a) be the last member of the closure of
[C}'f(ﬂ,a) N a]a
[i.e. last member of C,+ (s, Which is < a, if there is one and « otherwise]. Next
let k = k(B, a) be the first k such that y; (8, a) = a.
Note that
(*) if A>B>a>0,form <k(B,a),y,(B,a)<a<y;(B,a)and form =
k(f.a), Vm (B, a) =a =1y, (B,a), and [y, (B, a) = a iff a is an accumu-
lation point of C, +5 ).
Suppose a <fB, m < k(B, a); let

e =¢,(f,a)=Max{y (B,a) +1:1 =m)},
then ¢ =« + 1 and clearly
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() 7 (B, )=y (B, &), v (B,)=p; (B, E)whene ={ =aforl=m.
We define d:

suppose a<p, let m =k(f,a) be maximal such that:

€ t_i?e-f 8m(ﬂ, a) <a, yl—(aa 8) = yl_(ﬂa 8) for { =m and

1 (B, a)ES; now let d(B,a) be the unique ¢ such that
Ym (B, @) ES,.

If this does not define d(f, a) then let d(f, ) = 0.

Suppose Y C A has cardinality A, and £ < A. We shall show £ €ERang(d ! Y).

Let M be a model with universe 4 and the following three relations: x <y,
X€E€Y,i€(,.

Let N; (i < A)be increasing continuous sequence of elementary submodels of
M, | N;|| <2 and iEN,,,. We can find a limit 6 €ES;, such that N; has
universe . Choose BEY, B & N;. .. So k(f, d) is well defined and > 0. Let

€ £ 8k(ﬂ,6)(ﬂ ,0).

We claim that ¢is <dJ. Why? If / <k(f, §) thenby (*) y, (8,d)<d,and asd
is a limit, y7 (B, d) + 1 < 4. Suppose [ = k(B, 8), y7 (B, ) is =4, if equality
holds then by (*) (as ;£ ,(8, §) > &) d is a point of C,+_ 4 5, but then (as d ES)
v (B, d) (which is >4J) cannot be a limit ordinal. Hence y*,(8,9) is a
successor ordinal, so it can be only  + 1. But then easily C,+_ 34 = {9, 0},
hence y;7 (B,0)=0<4.So evenif | =k(p,d), y7 (B,9)<dsoagainasdisa
limit ordinal, ;7 (£, 8) + 1 <4. By the definition of &;4(8, §) we can con-
clude that it is <d.

Remember & = g, 5(8, 9).

Let the formula ¢(x,y)=0(x,y,&, 7 (B, 0))i=kps say that: y is limit,
XEY, e<y<x, y (x,y)=v7(B,0) for | =k(B,9) and ydps(x,y)=y.
This is a first order formula with parameters from N; and M k ¢(f, J). As
O0&EN;, 0EN;,,, BEN;,, clearly

M|FVy 3y >yVx 3x' >xex’,y).

Hence for some ¢’ < B’ in N, M k p(B’, 8"), 8’ > &, e and the interval (¢/, f’) is
not disjoint to Cj.

By (**), we can prove by induction on [ =k(f,d) that y (8,8)=
(B, 0)=v (B.e), &B,B)=¢e(B,0)=¢, and y'(B,B)=v"(B,d)=
7t (B, ¢€).

So yiss(B,B)=0. By the choice of (B,4"), eg, for [=
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k(B,0):y (B, 8=y (B, €)=y (B,9), Vips(B’,6")=3J". We note that
k(8, B) satisfies the requirement on m in the definition of d.

Now for I =k(B,6)+ 1, y7 (B, ) is the last member of the closure of
B’ N Cs,s0as (6, )N Cs # &, itis >J’; hence ;7 (B, B’) cannot be equal to
(B, &(B, ") as the latter is =y,_ (B, &_.(B,B))=0". So easily every
m’ = k(B, d) + 1 does not satisfy the requirement on m in the definition of d.

So in the definition of d(8’, B), mis k(a, ) and y,; (B’, B) is J, and as 6 E.S;
we finish.

3.2. OBSERVATION. If disregular > R, S C Astationary not reflected then
Ap[As 4, A

3.2A. EXPLANATION. Remember A —[4;4;A];"' means that for some
3-place function d from A to u, there are { < u and pairwise distinct ordinals o,

Bi, 7: (i <A4) such that
h<h<h<A=d(a;, B, ) #C.

PROOF. Let C(a<A), S{(&<A), 7t (B, a), v (B, a), k(B, @), e,(f, a) be
as in the proof of 3.1.

We define a 3-place function from Ato A: if a<f <y, and m = k(y, B) is
maximal such that: y7(y,)=y7(y,B) for I =m and y,}(y,®)ES; then
d(B, o) = &, otherwise it is zero.

Letfor/=1,2,3,Y,={y.:a<A} CA,ylincreasinginaandlet & <i.We
should find « <f <y <4 such that d(y., y3, ) =¢.

Define M as in 3.1 but with the predicates x€ Y, for / = 1, 2, 3 and also N,
(i <) and ¢ will be chosen as in the proof of 3.1.

Choose yE Y3, y € Ny, 1. Let k = k(y, &) and £ = &, 5(7, 6); now as in the proof
of 3.1 ¢is < J. Now choose aEN; N Y,, a > ¢ and then choose SEN; N Y,, such
that not only f > a but (o, ) N C;= &. Now d(a, B, y)=¢.

3.3. THEOREM. (1) Suppose A is regular >R, 0 <A regular, S C
{6:0 <A, cfd = 8} is stationary not reflecting in any inaccessible, o < 0, and
Jor every regular cardinal x in the (open) interval (6, 1), k+[01°, then
AP[ALS.

(2) Suppose (8;: i <i(x)) is an increasing sequence of regular cardinals <A,
A regular (> R,) and for each i, S; C{d:0 <A, cfd = 6} is stationary not
reflecting in inaccessibles (< 1), $; N S; = & fori #j and

(V) (x regular Ak <A=xk+{[6];°: 0, <k})
(see below Definition 3.4).
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Then A+[A)? where 6 = Z, ., 0;.
(3) Inpart (2) if A = a* we can conclude

even A[A]3.
(4) Suppose in (2) we replace

(Vk) (xc regular Ak <A=x+{[6];°: 6, <xk})
by
(V) [k regular Ak <A =k+{[6];°:jEA}]

The conclusion still holds if
(*) for every j <o there is Ky < A regular such that:

[=x<iank=cfk=jEA,]

3.4. DeFINITION. K7{[0,],“:j <j(+)} means that there is a function F
from [x]<“[ o {w Ck:]w| <R}] to xsuch that foreveryj <j(*)and 4 C k
of cardinality 6;, {F(w): wE€[4] <} includes g;.

3.4A. REMARK. Note that in 3.3(2), the condition kxA{[6,];°: 6, <k} is
trivially satisfied when g; = X, for j <i(*).

Proor oF 3.3. (1) Follows by (2).

(2) For each regular x < 4 there is a function g, from [x]<“ to k exemplify-
ing x[6;];“ whenever 6; <k (or, for 3.3(4): jE€A4,). For each i, 0<i <4
choose C;, such that:

(a) if i is a successor ordinal, C; = {i — 1, 0};

(B) if i is a limit ordinal, cf i < i, let C; be a closed unbounded subset of i of

order type cf{i), 0€ C;and cf(i) < Min(C; — {0}) and an ordinal which is
a successor in C; is a successor in 4;
(y) if i is an inaccessible cardinal C; is a closed unbounded subset of i
disjoint to
S US;:j<i(x),j <i).

(8) if i is a regular cardinal but not inaccessible, it is a successor cardinal so
we can find a closed unbounded C; C i such that

a€ECirna>0=|a|*=1i.

W.log SN+ 1)=& for each i, hence S does not reflect in any
inaccessible cardinal.
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Now for a« < B, a > 0 we define by induction on /, ;7 (B, @), ¥, (8, ), and
then k(B, a), €(8, a) (note that in addition to the use of g, we have some minor
differences from the proof of 3.1).

(A) v (B, ) =P8, 75 (B, a)=0.

(B) If y* (B, @) is defined and > & and « is not a limit point of C,+ ,, then
we let y%, (B, a) be the minimal member of C,+ 4 ., Which is = a and let
7i+1(B,a) be the maximal member of C,+ 4, which is < a (by the choice
of C,# (.. and the demands on 7" (B, ) they are well defined).

Otherwise v, (8, @), 7,5:(8, ) is undefined.

So

B) @ 7y (B, a)<a=y"(B,a),

(b) 7%.(B, o) <y (B, a) when both are defined.

(C) Let k = k(B, a) be the maximal number & such that y; (8, a) is defined
(it is well defined as (" (B8, @) : [ = k) is strictly decreasing). So

(C) 7B, )=a

OF Yiig.) > @, Viip, 18 @ limit ordinal and « is a limit point of C+,, (5.0

(E) Let for m = k(f, a):

en(B, ) =Max{y; (B, )+ 1:1 =m}.
Note
(E) (@) &,(B, ) = a (if defined) and
(b) If o is limit then ¢,,(8, a) < « (if defined).
() Ife, (B,a)=¢E=athenforeveryl =m

1B, e) =y (B, v (B,a)=y7(B,S), elB,)=¢eB,¢).

[Explanation for (c): if ¢,,(8, a) <a this is easy (check the definition) and if
&.(B, a) = a, necessarily £ = « and it is trivial.]
(d) If I = nthen (B, a) =¢,(8, ).
(F) Let n(B,a) be the maximal n =k(8,a) such that for /=n,
7 (o &(B,a)) =y (B, @)
(G) Let &(B, @) = £upaf B, ).
(G)) For0<a<f <A, clearly (a) n(B, a) = 0 is well defined, and (b) when
aisalimit (B, a)<a.
Let us partition S; to o; pairwise disjoint stationary sets, S; ; (j < g;). Now we
define the function
d:[Al’*—o= % o,

i<i(s)

3.4B. DEFINITION. We define d(8, o), a < B, by cases, letting n = n(8, a).
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Case 1. There are ordinals &, {, i and j such that:
(W) E<a<{<y/(B,a),
(ii) Sup[C)spm N &1 =Sup[C,+ehpan N &l
(iii) Cy,,*(,a,a) N [é, C] =d,
@iv) v (B, a)ESi,j-
Then let d(8, o) =].

Case 2. Notcase 1, 0<a<pBbut y, (B, a), 7, (a, &,(f, a)) are limit and
the set w defined below is finite. Let

i(x)= SuP[Cr,."(ﬂ,a) N Cy..*(u,e,(ﬂ,a))]'

Let E be the following equivalence relation on C,+g o, — i(*):

NEP = (VY EC, repap) <?=70<7].
We assume that the set

def .
w= {(yE€C,+pa: v > i(*),y =Max(y/E)}
is finite (really, if it is infinite, its accumulation points are in the closures of
Coirpy a0d Of C, o gp ap)-
We let d(B, a) = g(w’) if g(w’) < g, zero otherwise, where

K= Cf()’: (ﬂs a)) = | Cy,,*(ﬂ,a)l

and w’ is the image of w under the Mostowski collapse Colc, (of C,+(p.0)-

*(Ba)

Case 3. Not cases 1, 2.
Let d(f,a)=0.

Now supposethat Y C 4, | Y| =4, and d < ¢. We shall find « <fin Ysuch
that d(B, @) =d. Suppose d < g;, let M be a model with universe 4 and all
relevant relations and functions (countable many). Let (N;:i <Ai) be a
sequence of elementary submodels of M, strictly increasing and continuous,

| N; || <A, the universe of N, is an ordinal, and not a successor cardinal.

Choose 8 €S; ;such that | N;| = J. Choose BE Y, B EN;.,,. Let n = k(B, 9).
Let ¢ = ¢(B, ) (which is <4, see (G,)(b)).

Case A: v} (B,0)=4.

Now 4 is singular (as it €S;) hence C; has order type <, so we can easily
(as in the proof of Theorem 3.1) find <4 in Y such that case 1 of the
definition of d(8, B) applies and d(8, #’) = d as required.

Case B. Not case A.
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Then necessarily 8 € Cy,, where 6(¥) = 3} (B,). As 6E€ Csyy, cf 5(»)>
|Cs| Zcfd =6;(cfd =0;as d €S, ;). Hence J(*) has cofinality > 6;. So

Cg(,) ﬂ S -_;) CJ(.) ﬂ Si,d # g

hence (by (y) above) cf d(x) <dJ(x) hence (by (f) above) Cj,, has order type
< Min[Cj,, — {0}] < 4. Hence (as | N;| =9):

D ={¢(€Cy.y: & <d,forsome { <d
f = Sup(C,;(.) N Nc) = MaX(C,;(.) N Nc)
and & = Csy N (| N 11| — IN D)}

is unbounded below & hence has power = cf é = 6;. By the choice of g, (where
k¥ of d(»)) it is enough to show:

@ forany & <& <--- <& from D, {;a witness for {ED, if e(B, a) <&,
then for some 'EN, .,

n(B,py=n=k(B,90), &B,B)=¢e(B,a)=¢,

Cye.ppe Satisfies: & belongs to it, it is included in

“nepa
So U Ny 41l — INGITU «« - UINg 44| — INg ]

and is not disjoint to any

[Ng+1l — ING, forg=1,...,p.

Now € is quite easy by definition of elementary submodel.

(3) Let (hz: B <A) be such that: hy is a function from ¢ onto . We now
define a coloring d’ (where d comes from the proof of part (2)): fora <f <A,
d'(B, ) = hy(d(B, o).

Why is d’ as required? Solet Y C 4, | Y| =4, d’ <A and we shall find a < g
in Y such that d’(8, a) = d’. Let M be a model with universe A and all relevant
relations and functions. Let (N;:i <<A) be a strictly increasing continuous
chain of elementary submodels of M such that |»;| is an ordinal. For every
pair (i, d), i <i(#), d <o; choose J;,ES;, such that N, has universe d;,,
clearly y = U{d,,: i <i(*), d <a;} is <4 so there is § € Y such that (8 >y
and) B€&N, .. Choose d <o such that hy(d) = d’ (ks is from o onto f) and
choose i <i(*) such that d <¢;. Let § = d;;, and continue as in the proof of
part (2).

(4) Same proof as part (2).
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3.5. ConcrusioN. (1)Eg. ifm <w, A<, Am(Vj>m)R;4[R, 15 then
Rm+l_/"[xw+1]%{..,+.-

(2) AT AR,

(3) If 4 is an inaccessible not Mahlo then A 4[4 3,

(4) R AIRIR.

PrOOF. (1)By3.3(2) R, 1 7[Ry 1]}, (ustlet m <, g,: “7[R,]— K, be
such that for every /| <k <w, if R,#[R;]c? then for every 4 CR,, of
cardinality X, R, C {g,(w) : w a finite subset of 4 }).

The stronger version X, , 7[R+ 1]k +1 follows by 3.3(3).

(2) Follows by 3.3(1) applied to S = {d:0 <A* is limit >4}.

(3) Follows by 3.3(1) applied to S, a club of A consisting of singular ordinals.

(4) Follows by 3.3(4) if x <R, is regular; let k = X, and, e.g., g(w) =

hy(|w|) where A; is a one-to-one map from w onto j + L.

3.6. OBSERVATION. Under the assumption of 3.3(1) A-#[4; 4; A]2. Simi-
larly for 3.3(2), (3), (4).

Proor. Combine the proof of 3.2, 3.3.

3.7. CLAIM. Let A be a Mahlo cardinal, S;, be inac(A) =4 {rx <A:x inac-
cessible}. For C C Alet lim(C)= {6 €C: 6 =sup(d N C)}.
Let C, denote a club of x. Then the following statements are equivalent:
(1) For every (C,:k€E€S,,) for some club C* of A, (VI <) (IkES,)
[C*Nnéd CC.NI)
(2)~ For some stationary 4 C A for every (C,: Kk €S;,) thereisa club C*of 4
such that:

(VS Elim C* N A Ik ES,)[d Elim C, Asup(C* N 5 — C,) <J].

(2)* Like (2)~, for every stationary 4.
(3)~ For some stationary A C A for every (C, : k €S;,) there is a club C*of A
such that:

(VO Elim C* N A} 3k €S,,)[0 €lim C, and for every large enough
i€EC*NJ, Min[C, — (i + 1)] <Min[C* — (i + 1)]].
(3)* Take (3) for every stationary A4.

ProoOF. (1)=(2),(2)*,(3)7,(3)*. Trivial (use the set of limit point of the
C*given for (C,: K ES,,) by (1)).
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(3)"=(2)". Let A C A be a stationary set exemplifying (3)~ and we shall
prove that it exemplifies (2)~. So let (C,: k €S;,) be given, and we should find
a club as required in (2)".

Let C*be a club of A as guaranteed in (3): i.e.

(VéEC* N A) Ik ES)[d €Elim C, and for every large enough i €C* N 4,
Min[C, — (i + 1)]<Min[C* — (i + 1)]};

let
C** = {6 €C*: J a limit ordinal and d = sup(é N C*)}.

We shall prove that C** satisfies the requirements in (2)~.
So let 6 €lim(C**) N A4 be given. Clearly 6 € C* N A. So by the choice of C*

(I k€S, Elim C, A for every large enough i EC* N 4:
Min{C, N d — (i + D] <Min[C* — (i + 1)]]

and let k exemplify it and let “for every large enough i” means i > i(9). It
suffices to prove
0E€lim C, ASup[C* N — C.] <.

The first conjunct we already know. For the second we prove
Sup(C** N Jd — C,) = i(d). So suppose eEC* N J, £ >i(0). AscEC*™, ¢ =
U <cre &, & > i(J) strictly increasing, & €C*, and so clearly & <d. By the
choice of « [using &, as i] [, &+,] N C, # & for each { <cfe hence eEC,
hence ¢ € C** N d — C,.. We have proved (C** N § — C,) C i(5) as required.

(2)"=(1). Let (C.:x€ES,) be given. Choose 4 C A, a stationary set
exemplifying (2)~. Applying (2)~ to (C,: Kk ES,,), we get a club C* of 4 such
that

(VOoeEC* NAYIKESYIIElim C, ASup(C* N d — C,)< ).

For a (limit) 6 EC* N 4 let k; €S;, and A(d) <4 be such that 6 €C,, and
C* N d — C, C h(d). By Fodor’s lemma for some stationary B C 4 N C*and
y <A, (VOEB)[h(d)=7y]. Let C** = C* —y. So C**is a club of 1, and for
every d <A there is 6, EB, J, >4, so (letting k = ;)

C»*NoCC*Nd—yCC*No—y
=C*Nd, —h(0)CSC, NI —h()CC.NG,
hence C** N § C C, N J as required.
2)*=(2)". Trivial.
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(3)*=(3)". Trivial.

3.8. ReMark. (1) If 4 is weakly compact, 3.7(1) holds.
(2) If u <4, A satisfies (1) of 3.7 and P is a forcing notion satisfying the
pnt-c.c. thenin V' 3.6(1) still holds for A.

3.9. CLamM. If 1 is Mahlo, S; C A is stationary for i <A, and for no
inaccessible ¥ <A (Vi <k)[x N S; is stationary], then 3.6(1) fail.

3.10. REMARKS. (1)Saying that the set of such x is not stationary makes no
change, as we could have shrunk the S;’s.

(2) By a result of Magidor [Mg], 3.9 implies: if A satisfies 3.6(1) then A is
weakly compact in L.

ProoF. For k€S, = {k <A: kinaccessible} let (k) < x be minimal such
that x N S} is not stationary, and C be a club of k disjoint to S}, and to
(h(x) + 1). Suppose C* C A is a club as guaranteed for {(C,: k €S,,) by 3.7(1).
As x is Mahlo and S; N C* is unbounded in C* for each i (being stationary)
clearly C~ = {6 <A:6>0andfori <d,S; N C*has order type 4} is a club of
A.

Choose 6 € C~ so for some kES;,, C*NdC C, NI.

Now C*Nd#J (asd€C) hence C, Nd # &, hence h(k) <Min C, <
d. This implies C* N Sy, NI # & (as IEC™). However C, N Sy =,
contradiction.

3.11. THEOREM. Suppose, for a Mahlo cardinal ., that 3.7(1) fails and:

(@) (S;:i <a) are pairwise disjoint stationary subsets of A, g < A,

(b) C* C Ais a club consisting of limit cardinals;

(c) for each inaccessible k <A, there is a function g : [k]<° — o and club
C*Cksuchthat: ifi<o,i<d<k,d€EC"NCT*NS;,,and Y C 4 of
cardinality d then i E{g(w): wE[Y]=*}.

Then A-+[A]3.

3.12. REMARK. We can get also A-4[4; 4; 1]2. Remember S, = {k <4:k
inaccessible}.

ProoF OF 3.11. Like 3.3.

Wlog [c<i=oc<MinC*], SN+ 1)=C, S CC* As 3.6(1) fails
also 3.6(3) fails for 4 C S; (which is stationary), so there are (C.:kES,,)
which exemplify the failure of 3.6(3) for S;.

We now choose C, for a <A as follows:
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(@) Co=0, Ciy ={0,1};

(B) if @ = ¢ is singular ordinal (i.e. cf § <J) C; will be a closed unbounded
subset of & of order type cfd, 0EC;, cfd <Min(C; —{0}) and
(VieG)i #Sup(C; Ni)=(3j)li=j + 1)

(7) suppose a=xES, NHm(C*), let C2be kN CHN N, Clifo <k
andlet C°bek NCT N{d<k:0€N,;Ci}ifo=k

[equivalently if 0 = 4].

Let

Co={i:i=0o0ri=S8up(i N CEYeC;or
(FJECHIG =)+ 1Aj>Sup(j N C7)]}.

[The last part in order that every limit ordinal in C, will be an accumulation
point of C,].
©®) If a=k€ES,—C*, let C,Ck be a club, 0€C,, Min(C, — {0})>
Sup(k N Ct)and (ViE€C)[i # Sup(C, N i)=(3Ij)i=j+ 1))
For the rest of the proof see the proof of 3.3.

3.13. REMARK. In 3.7 the equivalence holds for each (C,:xEJS;,) se-
parately.

3.14. LEeMMA. Suppose
@S C A is stationary, [0 ES = cf d = 0)].
S does not reflect in any inaccessible A’ < 4, and for every regular k €(0, A)
(%) thereis g.: [K]1<® — kK such that: if A C k, |A| = 0, A closed under g,,
cf(sup A) = 0 then A4 includes a club of (sup A).
Then AA[A]2.

3.14A. ReMaRk. The condition (*), 4 holds if there is no inner model with
large enough Erdos cardinals, by Magidor covering theorem [Mg2] (i.e. if
Kk > 6 > R,, and in the inner model K, kx-4(6);~“ then (*), 4 holds).

ProoF. Like the proof of 3.3; let $ = (S;: { <A) be a partition of S to
pairwise disjoint stationary subsets. Now note that w.l.0.g. for each {,

F(S;)={6:d <4, S; Ndis a stationary subset of J}

is a stationary subset of A (otherwise apply 3.1). So as F(S;) has no inaccessible
member we have for some 6,

S} ={3:0 <4, cfd =0, sEF(S,)]

is stationary.
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In the definition of the coloring d, is case 1 we replace (iv) by

@vY 7 (B, D)ES,
(and then let d(B, o) =J).

In case 2, we let ¥ = cf(y,” (B, a)) which is equal to | C,+ |, and we let g’ be
a function from the family of finite subsets of C,+ . Into C,+,, such that
[C,p.00 8'1=(x, &), and let d(B, ) be the unique { such that g’(w) belongs to
S;. The rest is similar (but for the color d we use ordinals in S;; provided we
arrange g, such that

(*) forevery A C k, {g«(w) : w C A4 finite} includes 4 and is closed under g,.
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