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ABSTRACT 

Aroused by Todorcevic's breakthrough we prove here some complementary 
consistency results, mainly 2 ~* ~ [Rd 2. We also get some generalization of his 
theorem to, e.g., 2-/-[2]~, for 2 regular not to-Mahlo. 

Introduction 

Todorcevic had stated that the important open partition relations are 
R~ "-* [RI] 2, or R1 --" [(RI, R1)] 2, 2 ~0--" [Rd3 2 and 2~0--- [2~0, [2~0; 2~0]]. Certainly 
the first got more attention (maybe because of its relation to many other 
problems on RI, see e.g. [KV]). Lately he made a breakthrough proving in ZFC 
R I~-, [Rd2,; Todorcevic had an older result in the direction of the consistency 
of 2"o - -  [2"o, [2~0; 2~0]]2: if we add to V any number of Sacks reals with 
countable support (product, not iteration) then (if for simplicity V satisfies 
G.C.H.) Rn --" (Rn, [RI, •1]) 2. 

We prove here (in I. l) the following: let V satisfy G.C.H. (for simplicity), 
R0<x<`1- -<Z,  2 = x  +3, x successor of regular, we can blow up 2 "0 to X 
without collapsing cardinals by a forcing so that still ,t ---(,1, [x; x]) 2. So the 
restriction to R 1 is removed. In fact we can replace R0 by any regular/z (using 
/z-complete forcing). The proof relies on Todorcevic's and is influenced by 
order used by Gitik in [G] (for an iteration). 

t The author thanks the NSF and N.S.E.R.C. for partially supporting the research. Preliminary 
versions of §3 and §2 were circulated in November '84 and February '85, respectively. 
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We could have still thought that Sierpinski's result 2~o-/-[RI]~, Galvin and 
Shelah's [GS] result 2~o-/-[2R0]~o and Todorcevic's result RI~[R1]~, can be 
strengthened to 2~o--/-[R1]~. This (2 ~0---- [Rd]?) is quite an old problem of Erd6s 
and Hajnal [EH]; for a discussion of its importance see e.g. Erd6s [E] and III 21 
of [MU]. However, our main result is (in §2) the consistency with ZFC of 
2 ~° ~ [Rd]. More elaborately, if2 is a strongly inaccessible Erd6s, when/z = Ro, 
measurable otherwise; and 2 >/z  =/z <u, then for some/z-complete forcing not 
collapsing any cardinal, in V e, 2 u = 2 and 2 ~ [# ]~  (in fact 2 ~ [/t]~.3 for 
a </z)  (see 2.1). In fact we can make 2 ~ larger. Though settling the original 
problem a host has arisen: minimal cases are: 

(I) I¢2--- [lOde? 
(2) 2~0--- [R1]~0 ? 
(3)  

(4) 2 ~ [4]20 not weakly compact? 
Galvin had conjectured the consistency of {R2--'[R1]~c~):n <o9} for a 

suitable h : to ~ ¢o.* 
Lately Todorcevic made a breakthrough in partition relations proving 

Rf~[Rl]~,. He presented the proof in the MAMLS conference, Nov. '84. He 
told me then that he has another proof and he is working on the "family of 
uncountable linear ordered has no finite bases". He knew 4 + ----[4 +]2+ for 4 
regular. 

Our proof for (A), (B), (C) below (i.e. §3) continues the work of Todorcevic 
[T]. We use simpler coloring, as he used coloring on o91 which uses more 
information which was relevant e.g. to a new construction of uncountable 
linear order I whose square is the union of R0 chains (this was his starting 
point). Such orders were first constructed in [Sh]. 

We prove, e.g., 
(A) If4 is regular > R0, S __. 4 stationary with no initial segment stationary, 

then ,~.--/-[4 ]~ (e.g. ~. Mahlo, not 2-Mahlo or succesor of regular) (see 3.1). 
(B) If Vn < 09 3 m, k ( V m ' >  m)Rm,~[Rk]~f (i.e. various instances of the 

Chang conjecture fail) [equivalently A, Vk R,o [Rk]S, ] then 
2 

l]R,~+t • 

Todorcevic had proved 4 + -/- [4 + ]~ra if ( V/t < 4)[#era < 4 ]. 
(C) Suppose 4 is regular > Ro, 4-/,[4]~ (hence 4 is og-Mahlo). Then 

t For further results, solving some of the problems, from Spring '86, see [Sh 2], [Sh 3] and, 
better, [Sh 4], [Sh 5], [Sh 6], and more applications of§3 in [Sh 7]. 
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(,) I f  (C~:c~ < 2 ,  c~ inaccessible) is such that C6 is a closed unbounded 
subset of  ~ and C ÷ c_ 2 is closed unbounded,  then there is a closed 
unbounded set C* c_ C + __. 2 of limit ordinals such that for some c~ < A, 
a~EC6, for i < 2  we have that n~<a(C~, U [c~i, 2)) contains a club of  2 

[using instances of the Chang conjecture we can weaken the hypothesis 

to 2 --- [212 for suitable It]. 

REMARX.S. (1) On the hypothesis of(C) see 3.7, 3.11. 
(2) In fact, in the cases we get 2-/-[2] 2 , we get also 2--/-[2, 2, 2] l,IJ . 

Consequences of  (C) are: 
(D) (1) i f2  > Ro is Mahlo but not co-Mahlo, then 2-/-[:t]]. 

(2) If  2 > R0 is regular, S~ _c_ 2 stationary for i < 2 but  for no inaccess- 
ible 2 ' < 2 ,  (Vi  < 2 ' )  (& :~ 2 '  is stationary), then 2-fi[2]~0. 

(3) I f2  --- [2]2° (2 > R0 regular), then 2 is weakly compact in L.  

(4) If  2 is successor or singular, then 2-fi[2 ]~0- 
(5) 1%,+ 

§1. On the consistency of 2 --- (2, [x; x]) 

1.1. THEOREM. Suppose It < x < 2  are regular cardinals, It =It<', x = 
x<% 2 = 2<% 2 > :b(x) + and (V 0 < x)[O <" < x]. Then for some forcing 
notion P: 
(1) IPl =2 .  
(2) IF, "2,  = 2" .  

(3) I~-e"/l--'(/l, [x; x])" (see Definition 1.2 below) (hence for xj < x :  

IF, "2 --. (2, 
(4) Forcing by P does not collapse any cardinal nor change a cofinality and P 

is/z-complete. 

1.2. DEFINITION. (1) 2 -" (its, lit2; ItZ]a) holds ifffor every 2-place function 
c from 2 to 0 + 1, at least one of the following hold: 

(i) there is A c 2, I A I = It1 such that, on A, c is constantly zero; 
(ii) there are ai, P~ < 2 for i < It2, pairwise distinct, and (,  0 < ~ < 0 such 

that for i < j  < Itz, c(a~, fls) = ~" 
If  0 = 1 we omit it. 

(2) 2 --- (its, lit2, It3]0) holds iff, for every 2-place function c from 2 to 0 + 1, 
at least one of the following holds: 

(i) there is A c_2, IAI =#1 such that, on the set A, the function c is 
constantly zero; 
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(ii) there are a~ < 2 (for i </z2) and flj < 2 (j < /h) ,  all pairwise distinct, 
and (, 0 < ( _-< 0 such that for i </z2, j < #3 we have c(.~, fly) = (. 

PROOF. Let 

Q = {g: g a  function from some a </~ to {0, 1}} 
order: inclusion 
P = {f:  f a  function with domain a subset of 2 of 

power < x , f ( i ) E  Q} 

stipulating that when i $ Domf, f ( i )  = ~ ~ Q the order on P is: 

P ~f~ < f2 ifffor each i E D o m  f~, ft(i) =< f2(i) (in Q) 
and {i ~ D o m  f~ : f ( i )  ÷ f2(i)} has power </z.  

We say f~ ----Dr f2 (f2 a pure extension o f f )  if 

[i E Dom f~ ~ f~(i) = A(i)]. 

EXPLANATXON. Note that (P, <pr) is really adding 2 Cohen subsets to x; 
and ( { f E P : l D o m f l  </z}, < ) is really adding 2 Cohen subsets t o / c  The 
point is that q extends p if: 

(a) q gives more information, 
(b) outside Dom p it gives < x new pieces of information, 
(c) inside Dom p it gives </z additional pieces of  information. 

A. FACT. P is a-complete. 

B. FACT. P satisfies the x+-c.c. 

By the A-system argument 

IPI --2<~. 

Ibp "2 , = 2 " .  

C. FACT. 

D. FACT. 

Standard: 

E. FACT. 
cardinal". 

If  0 is regular cardinal, lz +< 0 < x then IF "0 is a regular 

PROOF. Suppose p • P,  ;f < O, and p IFP "cf 0 -- ;f". So there are P-names 
(/(for i < X) such that: 

p [~-e "each ~i is an ordinal < 0 and 0 = sup/<x ( ~) ' -  
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We define by induction on a < #, p~ ~ P such that: 

(a) for fl < a, pp < pr P~, and Po = P; 
(b) if a is limit, Dora p~ = Up <~ Dora pp, 

p~(i) = pp(i) for every fl < a large enough; 

(c) if i < x, ~ < O, qEP,  pp+~ <q, 

{ j E D o m  pp+~ : Pp+l(J) ~ q(J)} C_ Dora pp and q [~-e "(~ = ~" 

then q r (Dora P#+l) [~-r "~ = ~' .  
This is enough: for each ~ < 0, necessarily, as p II-"0 = sups< z (~i)" (and 

p = p0 < p~) there are qeEP, satisfying p,  <qe ,  an ordinal ~ [ ~ ] < 0  and 

i(~) < Z  such that 

II-,, "o > = > 

As {i ~ Dom(p~) : p~(i) ~ q~(i)} has power < #  it is included in Dom p#~)for 

some fl(~) < # .  By (c) above 

hence q~ r Dora(p~) ]J-p "~to = ([~]"- As the number  of  i (~) is X < 0, 0 regular 
(in V) there is a set SC_O, ISJ = 0  such that i (~)=i ( . )  for ~ E S  and 
( [ ~ ]  < ~[~2] when ~ ~ S ,  ~2ES, ~ < ~.  Let 

u~ = {j EDom(p~) : q~(i) =A p~(i)}, 

so lu¢l < i t .  As I : _-<it for e a c h j ~ D o m ( p , )  and as 

lu¢l < i t  =it<  < 

for some ~ < ( in S, q¢ t (u¢ ~ u¢) = q~ ~ (u¢ :'1 u¢) hence q¢ ~ Dom(pu),  
q¢ t Dom(p~) are compatible and (q~ ~ u¢) U (q~ t (Dora p~ - u¢)) is a common  
upper bound; but they force different values on (~t.), contradiction. 

We still have to carry the definition of  the p.'s. For a - - 0 ,  a limit no 
problem. For a = fl + 1, let {(i¢, re) : ~ < ~(,)} list all pairs (i, r), i an ordinal 
< X, r ~ P, Dom r a subset of  Dom p~ of  power < it. The number  of Do m re is 
< x  as (V0 < r ) ( 0  <~ < x )  and I Dom p ~ l < x .  For each such domain the 
number  of  conditions is < it <~ = it < r .  Lastly the number  of  values of  i is 
X < 0 < x. So ~(,) < x. We now define by induction on ~ < ~(.) a condition 

p#.¢ E P such that: P~,0 = P#, (V ( < ~)p#.~ --<pr P#,¢, for ~ limit p#.~ = ~ <~ p~.~ 
and for each ~ < ~ ( , )  i f  there is q, p#.~<-_q~P, q forces a value for ~i~, 
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q t (Dom r~) = r~ and [Y i ~Dom(pp,¢) - Dom(r¢)] [pp.¢(i) = q(i)] then Pp,¢+l 
satisfies this. 

def 
Now let p,  = Pp+I = Pp.,(.). It is as required. 

F. FACT. Suppose 22 is regular, 22--" (x+)~, 22 > 0, and 21 = [2<zq + (or just 
21 is regular and ( V a  <21)[a <~ <21]. Then IJ'-e21 ~(21, [x; x]o). 

PROOF. Let d b e  a P-name of a 2-place function from/~1 to 0, po~P. For 
a < p < 2 ~  choose p~,~, po<p~,~EP such that for some ~ , p ~ 0 ,  
p,.p N-e"d.(a,P)= ~u~.p', and if possible, ~u~,p ~ 0 .  So ~u=,~ = 0  implies 

po I1=  # )  = ¢+o,p". 
Let Dom p~,# = {i~,#(O : ( < (a.# < x }  where i~,#(O increases with ¢. 
We define a 3-place function H with domain 21 : H(a, fl, y) is a sequence 

consisting of  
(i) ¢~,p, 

(ii) {( ¢,, ¢2) : i . ,#(¢,) = i ~ , r ( ¢ 2 ) } ,  

(iii) {( ¢, p~,p(i~,p( ¢))) : ~ < ¢~,p }, 
(iv) (( ¢1, ¢2) : i:.,(¢1)= i#,,(¢2)), 
(v) (( ¢, p:,,(i.,p(¢))) :¢  < ¢.,p}, 

(vi) {( ¢1, ¢2) : i,,#(¢0 = ip,,(¢2)}- 
So we have two colorings: ¥~,# (two place with 0 colors) and H (three place with 
x colors as x = x<~). 

As 21 - [2<~,] +, there is a subset A 0f21, such that: either 
(I) ¥.,p = 0 for every a < f l  from A, and IA I = 21 

o r  

(II) ]A I = 22, A has order type 22, and such that:  
(1) ~/~,# ~ 0 for a < fl from A, 
(2) for a < fl < y from A, ~/.,p = ~u.,r, 

(3) for al < a2 < fl < y from A, H(a i, a 2, fl) = H(ot 1, a 2, Y). 
So on A we can define a 2-place function H', 

H'(a, f l )=H(a ,  fl, y) for every yEA - ( a + f l  + 1). 

If(I) holds, P0 [I-e "d is constantly 0 on A" and we finish. So we shall assume 

(II). Note that ~/~,~(a < p ,  a E A ,  f lEA)  depends on a only. So as 22> 0 is 
regular w.l.o.g, for some ~u, (0 < ~u < 0), ~/~,~ = ~u for every a < p from A. As 
22 ~ (x +)~, there is a subset B of  A of  cardinality (and order type) x +, on which 
H '  is constant. 

So, the function H is constant on B. Hence for every a E B  (by (ii)) 
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( D o m  p , , p : a < f E B )  form a A-system, and let its "heart"  be b,, and let 

r~ = p~,ptb, for a < f l  ~ B  (the choice of  fl is immaterial).  So for each 

a E B :  ( D o m  p~,p - b~ : a < f l  ~ B  ) are pairwise disjoint. 

As I B [ = x +, for some C _ B, C has cardinality and order  types x +, and 

(r~: a E C )  form a A-system, i.e. for some r*, 

r* = r~ r (Dom r*), 

( D o m  r~ - D o m  r* : a E  C) are pairwise disjoint. 

We now define in V e by induct ion on i < x + ordinals at, fl~ (pairwise 

distinct) f rom C as follows: 

(i) a,- E C is minimal  such that  r~, ~ qe  and a~ > Uj<~ (aj U flj), 

(ii) fl~ E C is minimal  such that p~j,p, ~ .Ge and fl~ > aj for every j < i. 
I f  ai, fl~ are defined for every i < x, then as clearly in V e d(aj, #~) = g for 

j < i (as p~j.p, force this) we have finished. So it suffices to show 

r* lie "a~, fl~ are defined for every i < x". 

We have two cases (according to whether  the first to be undefined is an at or  fl~). 

Suppose first r* _-< r + E P,  and r + [~-r "a, is not defined (but aj, flj are defined 

f o r j  < i)"; w.l.o.g, f o r j  < i, rpj _-< r + and for j l  <J2 < i, p~j,,pj2 _-< r +. 

But D o m r ~ - D o m r *  ( a E C -  Uj<~(aj Uflj)) are pairwise disjoint and 

their  number  is r + (really x suffices). 

So for some a, I..)j<i(aj O f l j ) < a E C ,  D o m  r ~ - D o m  r* is disjoint to 
D o m  r +. As r~ t (Dom r*) = r* C_ r +, clearly r +, r~ are compatible: 

r+ + de__f r+ U re ~ (Dom r~ - D o m  r*) 

is an upper bound  but r ÷ ÷ [[- "a  is a good candiate for a,-". Hence ai is defined. 

Contradiction.  Suppose secondly r* _-< r + ~ P  and r + [be "fli is not defined 

but aj ( j  _-< i) flj (j  < i) are defined". W.l.o.g. f o r j  =< i we have r~j _-< r + and for 

Jl <J2 < i we have P~,,an < r+" 
For  each j _-< i, ( D o m  p.j,p - D o m  r~j" a; < f l E C )  are pairwise disjoint, 

hence for all except < x of  the ordinals fl E C - (a~ + 1) we have: D o m  p~j,p - 

Dora  % is disjoint to Dora r +. As [ C - (ai + 1)1 > x, for some fl ~ C, fl > at, 

and for every j < i, D o m  p.,,p - Dora  % is disjoint to D o m  r +. As 

p~j,p t D o m  r~j = r., = r., < r +, similarly to the first case r +, p~,p are com- 

patible. 

We want to show that the set {r + } U { p~j,p : j  -_< i} has an upper  bound  in P. 

By the definition o f  P it suffices to show that  any two are compatible.  As we 
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have shown that r +, p~,.p are compatible when j < i, it is enough to show that 
P~,~l,,p, P~,,~}p are compatible when j(1) < j ( 2 )  < i. This follows as the function H 
is constant on the set C __. 42, using the definition of H. 

By the definition of  P,  there is r ++ E P  such that r + ___< r ++, p,,.p ___< r ++ for 

j < i. Clearly r ++ lie "fl is a good candidate for fl; hence p~ is defined". 
Contradiction. 

§2. On the consistency of 2 ~o-~ [Rt] 2 

2.1. THEOREM. Suppose It = It <u < 2 = X and 4 is a strongly inaccessible 
measurable cardinal > It (or 4 ---, (t.ol)( °', 4 minimal). 

Then there is a forcing notion P such that: 

(it) P is It-complete, 

(13) Ie l  = Z ,  
", 

(~) P collapses no cardinal < 4, changes no cofinality, adds no sequence of 
ordinals of  length < It and I[-e "2~ = X' .  

2.1A. REMARK. At the urging of the referee we concentrate here on the 

case It = R0, 4 = g the first measurable. 

2. lB. REMARK. (1) See 2.7 for the improvemen t in the hypothesis on 4. 
(2) In (,/) we can get 4 ~[it+]2.3 for 0 < I t .  For this in (6) below d is a 

function from 4 to 0~, 0~ < It and f~ < 0~. 

PROOF. We try to define by induction on a < X: 

Q = ( P j ,  Q ~ : i < a , j < a )  and e ' E { 0 , 1 }  

as follows: 
(1) Pj is a forcing notion and satisfying the Rt-c.c. 
(2) Q~ is a Pi-name of a forcing notion of  power R I (with minimal  element 

or ~ i ) .  
(3) Q is a finite support iteration, i.e. 

Pj = { f :  f i s  a function with domain a finite subset o f j  and 

for i ~ D o m ( f ) , f ( i )  is a P~-name, ( f t  i)II"p, " f ( i ) E ~ "  
andf ( i )EH(2X)  +) (to avoid classes)} 

and 

Pj ~ " f <  g" ifffor each i E D o m  jr, g t i ]~-v, "f(i) < g( i ) ' .  

We let f o r f E P j ,  i < j ,  i ~ D o m ( f )  : f ( i)  = ~ orf ( i )  = 1~,. Note that for the 
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Q~ we are using, the set PS = {f~PJ  : f ( i )~  V(i.e. not just forced to be in Vbut 
is specific element)} is a dense subset of P~. 

(4) e* is an ordinal < 2 such that [e* = 1 =0 cf(a) = Rd (it just tells us what 
we are doing in Q~). 

(5) If e* = 0 then 

Q, = {f :  f a  function from some ~ < R~ to {0, 1}} 

ordered by being an end-extension. 
(6) If e * = l  then for some .da, e~, e 2, I and N~ ", h~, 

(s, t ~ I d,f {t _ R~ : [ t [ _-< 2}, [ S I = [ t I ) and r~, ~ ( ~ < R ~) the follow- 
ing holds: 

(i) a is an ordinal of cofinality R~, d, is a Pa-name of a partial function from 
2 to {0, 1, 2}, Ca a closed unbounded subset of a, and for / /E C,, do t l/is 
a P#-name and e~, e~ are ordinals < 3. 

(ii) If s ~ l  then Ns < (H(2X)+,~), N~ n ;t _ a, R~ c_ N~, [I N~ [[ -- R~, 
Rt ~Ns  (remember that IN I is the universe of the model N, so II N II is 
its cardinality) and C~ O N~' is unbounded in a N NT, U,et(2 n N?) is 
in Dom d, (i.e. on all pairs from each 2 O N~'), 

[ f l ~ N s ^ e ' = l = *  te,U N~C_N'/], 

{(fl, C r fl) : fl eCa n N,"} C_ N: 
and 

{(P~, Q; : j  <f l ,  i < f l )  : fl ~ C,, n N~} _ N~. 

(iii) I f  s ,  t E 1  then N~' n N;' = N~'n,. 
(iv) If I sl = It I, then h.~t is an isomorphism from N;' onto/7?,  mapping 

{(fl, d..~fl):fl~C~nN~} onto {(fl, d~t f l ) : f l~C~nNt ~ } and 
{(P:, Q,:j < fl, i <fl) :fl~N~ n C~} onto {(P~, Qi:j < fl, i < f l ) :  
fl E N f  n Ca}, hs,t is the identity on N~, it extends'h(=~(,)},(=~(o } and 
htmi~)},(m~.~t)} and h~,t is the identity when s = t and h,,t -- hf~ ~ • 

(v) For ¢<R~,  O~EN~¢}A2 is an ordinal, [ ~ < ~ < R ~ = * ~ < ~ ] ,  
[~ ~ ~=* 0~' ~N['¢}] and ~ EPa n N~'q, h~¢},{¢}(r~) = r~, h~¢},{¢}(0"¢) ffi 

(vi) I f  r ~ < p E N~¢} n P. then there are p~, P2 such that: p < p~ ~ N~¢} O Po, 
p <-_ p2EN~¢} O P., and if~ < ~ </~+ then for some q~, qzEN~¢,¢} n P., 
f o r / - -  1,2, 

ql IF" ".d.(~, ~ )  = ~ ", ~ t (~¢} O a) = Pt, q~ t (N~{¢} O a) -- h{¢},{o(p~_t) 
(e~, e~ are ordinals < 3). 
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(vii) For each a for which e* = 1 
(a) Min(N~'¢,¢} - N~) -- Min(N~'¢] - N~) for ~ < ~ < R~, 
(b) (Min(N~¢} - N~) : ( </~+ ) is increasing and converges to a, 
(c) for each (, (Min(N~'¢,¢] - N[~}) : ~ < ~ < R~) is increasing and con- 

verges to a, hence 
(d) if fl < a, e* = 1 = e~' then for some ((*) < R~ 

U{(N~' - N~') n 2 : t E l ,  t ~ s = t n ((.)}, is disjoint to 

U ( ( N ~ - N ~ )  0 2 :  t e l ,  t ~ s  = t  n ((.)}. 

(viii) Q , =  {w c_ R~ :lwl </z,  and for every ( E w ,  r~EGe, and for every 
< ~ from w there is q EN~,¢] n P, n .Ge. such that q lie. "d~(~, ~ )E  

{e, t, e2} " and there is q'EN~¢.¢} n P~, q' lip. "(/,(0~, 0~)E {e2, ~ } "  and 
q ' t  (2 n N~'¢]) -- h(¢},[¢}(q t (N~q n 2), and q t (2 n N~'¢}) = 
h{o,t~](q' t (2 n N~¢))) and these elements are in P~). 
Q_~ is ordered by inclusion. 

2.2. NOTATION. If F C_ P~, I FI < R0 we define q = UF; it is a function 
aa 

with domain a = U ,e r  Dom p and for each 7 Ea ,  g(7) = Uper p0'). 
In general q need not be in P, (e.g. maybe for some Pl, P2 E P and 7, 

P,(7) U P2(7) ~ Or). 

2.2A. FACT. Suppose: 
(1) F __ P~, I F I </z and for every p~, P2 E F and 7 E Dom p~ n Dom ,o2 the 

following holds: 

(i) U,er(r r 7) lie, "pt(7) < p2(7) in Qr" or 
(ii) U,~r(r t 7) I[- "P2(7) < PI(7) in Qr" 

then U F E P ,  is the least upper bound of F. 
(2) We can of course omit in (i), (ii) above " U , e r  r ~ 7": this is particularly 

useful when F __ P" (P" - -  defined above). 
(3) We can add in (1): 

o r  

(iii) U,er  r t 7 [l-P, "Pt(7) U p2(7)EQr". 

2.3. NOTATZON. P"~ = { p E P~: for fl E Dom p, p(fl) is an actual subset of 
R~ (or function from R0 to 2), not just a Pp-name, and if ep* = 1, ( < ~, 
( E p(fl), ~E p(fl), then for some rEN~¢,¢} n P"p, r < p t fl (so p forces that r 
will belong to the generic subset ofpp) and r [be, "dp( (,  ~) E {e~, ~ }" and there 
is r ' E P ~  O 3,~¢,¢} (note that generally r' is incompatible with p(fl)!) such that: 
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r '  t N~¢} }. Note that 
(i) {(p, P"a):BECa a N~ ~ } c_ N~ when e* = 1, s E I ,  

(ii) r O (p  t (N~¢})) U (p  t N~¢}) can serve instead r above. 

2.4. FACT. (1) I f  e* = 1, p EP",,  t E l ,  then p t Nt " ~N7 O P~. 
(2) P",, is a dense subset o f / ' , .  

PROOF. Note that i f / / ~ N ~ ,  then ( / / n  UsEzN~) ___ N~'. 

2.5. FACT. Pa satisfies the Rl-c.c. 

By well-known theorems, the only problematic case is a + 1, e**-- 1. Let 

a = Ue<~. v,,e, (¥,,¢ : ~ < RI) be increasing continuous, ~,,e < a. So suppose 

{ Pc: ~ < RI) is given, pc EP,+  1. By 2.4(2) w.l.o.g. Pc EP~+ 1. Let 

w e = {i < RI : i ~pc(a) or dom(pc) is not disjoint to N~i} - N~, or 
for some ~ < Rl, dom(pe) is not disjoint to N~,¢} - N~¢} U N~q}. 

Clearly w¢ is a subset of R I ofcardinality < R0, (dom pc) n a a subset of a of 
cardinality < R0. Hence by the Fodor lemma, for some stationary S _  

{t5 < R~ : of 3 = R0} the following holds: 

÷ e n = w*) .  

Min(w e - w*) -> (. 
As (dom pc) n a is a finite subset of a, by the Fodor lemma w.l.o.g, for some 

fl(,) < a for every ~ E S :  (dompe) n ~.,e c fl(,), and for i < (,  (dora Pi) O a c_ 
~,,¢ and (N~.¢) - N ~ )  n ~.,c = ~ for i < (.  

Let we - w* = {Co(() : a < a¢} (increasing with a), so a ¢ is finite and w.l.o.g. 
for ( ~ S ,  a ¢ = a*. Let M c = U { N ~ a } : i , j ~ w e }  (so Me is normally not an 
elementary submodel of (H(x), ~)).  

Let ( ( , )  be the minimal  element of  S. 
Let us define for ( ~ S, p~ as pc t (M e O a). (a, b and c below serve just to 

denote a variant of pc.) Now p~ ~ P " ,  as: it is a function, with domain a finite 
subset of  a, and for each i ~ D o m  p~, p~(i) is a set or function of  the fight kind. 

But why is i U D o m  p~ ^e*  = l ~ p ~ t i  I ~ - P ~ ( i ) ~ ?  By (viii) of (6) above 
and "[fl ~ N ;  ^ e t  = I ~ U , ~  N~t c NN" from (ii) of(6)  above. 

Next we define a condition p~ ~ P " ;  we define it by demanding Dora p~ is a 

subset of  a O Met. ) and 

(*) i f  
(a) i(1), i(2)~w~(.), j(1),j(2)Uw¢, and for I = 1, 2 
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[ i( l )~ w(.)  ^ i(l) =j(l)] 

v [i(l) ~ (we(.) - w*) ^ ( ~ a)(i(l) = go(C(*))) ^ j ( l )  = ao( C)] 

then 
(b) ~ ~ ~ - h{i(l),i(2)},{jtl),J(2))( Pc t N~i(l),i(2)}) -- p~ t N~j(I),j(2) }. 

Why is p~ ._._ ~.'--~,,9 By 2.2A. [Explanation: p~ is p~ mapped to a condition with 
domain __. M¢¢.), as far as is feasible.] 

Clearly for some f l (1)< o~, f l (1)> fl(*), { p~:~ ~ S }  c_ p'~, hence by the 
induction hypothesis, for some ~1 < ~2 from S, for some q ~P'~,),  p~, p~ < q. 
Again we can show that q t M¢c.)~P"~o ). (Note that we are strongly using "each 
Qr has power < R:' .)  

Let for ~ S ,  p~ ~P"~ be defined by the following: dom(p~) ___ a N M e and 
(**) i f  i(1), i(2), j(1), j(2) satisfies (a) above then 

a T a  ~ a 

To get the desired upper bound ofp¢,, p¢~ we shall apply 2.2A to 

r ~f ro u r, ur2ur~ 

where the Ft are defined below. 

Let r0 = { p~,, p~,, q, PL, pL}. 
[Explanation: Note that (UFo) t a ~ P",, so the rest are designed to force that 

p¢,(a) U p¢~(a) is a condition in Q~, mainly: for a(l) ,  a(2) < a* we want that 
-d*[0~,~¢l), ~.~a¢o] is ell or ~ .  Now F~, F2,1"3 will deal respectively with the cases 
a(1) < a(2), a ( 1 ) >  a(2) and a(1) = 0(2).] 

Let Ft = {h{~,~¢,).~,)}.{~,~¢,).~)}( P~, t {~,~¢,).~,)}) • a(1) < 0(2) < a*}. 
Let for a(2) < a(1) < a*, qat2),oo)EN[~,~¢,),~,~¢,)} f~ P "  be such that: 

(A) (a) h['~,~¢,)},{~,~¢,)}(q,(2),o(t) r N[~,~¢,)}) < p~, r N~,~¢,)}, 
a ~" a a 

(b) ht~o,~¢,)},t~,,}(qo(2),o(~ ) N[~,~¢,)}) < p~, ~ N[~¢,)}, 
(c) qo(2)..,,)lie. -d.(~a¢,), ~,~¢,))e {e~, d } 

(exist; see 2.3, in particular (ii)). 
We let 

I"2 = {hc%,~¢,),~,~¢,)w,,~¢,).~,~¢2))(qoc2),,o))" a(2) < a(1) < a*}. 

Lastly, for each a < a * ,  there is qo ~N~¢,).~c,)), such that (it exists by the 
demands on the r?'s - -  see (6)(vi)): 

(B) (a) q,~e"~ N N~¢,),,,t~o }, 
(b) p~, t N[~¢,)} > q,, 
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Let 

F3 = { q o :  a < a*}. 

Now F0 O F~ U 1"2 U F3 satisfies the assumptions of 2.2A (the point is that 
N'~ N N'/= NTnt for s, t e l ) ,  so, as said above, we finish. 

To finish the proof  of 2.1 we need (note that [[-p~ "2 ~0 = 2 "  is trivial) 

2 .6 .  CLAIM.  " 2  --~ f ~  12" ~, I)~l J3 • 

PROOF. For this is suffices that: 
(***) for every P~-name d o f a  function from A to (0, 1, 2} and poEP, for 

some a, and P i, d r a = d~, P0 < P l E P~ + i and e* = 1 and P l [~-e.+, "GQ. 
is unbounded in R : ' .  

A way to guarantee this is to use a preliminary forcing R,  the conditions are 
sequences (Pj, Q~: i < a,j < a) as required above, the order being an initial 
segment. This is a 2-complete forcing of power 2 <~. 

By the following Claim 2.8 the generic (Pj, Q,: i < 2 , j  < 2 ) is as required, 
i . e .  - "  

Why? Suppose d is an R-name of a P : n a m e ,  roER, ro forces: P0E .P~ forces 

(II-P~) d forms a counter example. We can choose by induction on fl < A, 
r# E R ,  such that A~<# ry < r# and r# forces a value d # to d ~ ft. Let 

r# = (Pi, Q j:i <a#,j <a#). 

So the iteration Q= (P~,Qj:i<)t,j<7) is uniquely defined and is as 

required in (I)-(6). Let d be U,<x .d e and apply 2.7 on (H(2a)+),E,2, Q, d) 

(more exactly -- expand by Skolem functions and find an elementary sub- 

model of power ;t which includes {i: i <2}). So we can find ~ such that 

cf8 -- R~, A#<6-# < 8, for a club of a < ~, dra is a P~-name, and there are 
(N~ : s c_ cf(8) finite), h~,, as in 2.7. Then we can easily find the ~ (i.e. ~) above 

P0 which is wlog in N o. 

Let (q/~ : a < R~) be increasingly continuous, U,<s, ~u, = a and for s el 

N; d~d Nw,:ce,~, 

0~ = Min[(N{~,o} - N~) t~ a], 

h~t  = hw,: ce,}.W~: Cet}. 

This choice defines a forcing notion Q in Ve-. Now 
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O.,= (Pi, Q.j:j ~ a , j  < a )  

can be cont inued by choosing Q~ as above and we get r*. But if  r* E qR, then 

the iteration in V[.GR] satisfies (***) above. So we finish. 

2.7. CLAIM. Suppose (a) ~ is measurable > i t  or (b) It = R0, 2 the first 

cardinal satisfying 2 ~ (o9~)~o ~'. 

I f  M is an algebra with It (finitary) operations and universe 2, then the set o f  

ordinals t~ < 2, satisfying the following, is closed unbounded  or stationary 

_ {~ < ;t : cf(~) = i t+} :  

( .)  there are Ns(s E1 def {s c_ cf(5):1 s l < R0}, 0¢(~ < t~)) such that: 

(1) For  s E l ,  Ns is a bounded  subset o f  t~, II gs II --it + including 

{ i : i < i t + } .  
(2) For  s, t E I,  N, n t = N~ n Nt. 
(3) For  s, t E l ,  Is I = I t I there is an order  preserving isomorphism h~., 

f rom N, onto N,. 

(4) I f s  = t n a, s E l ,  t E l ,  then Ns is an initial segment of N,. 
(5) (Min(N{¢j - No) : ~ < cf(t~)) increases and converges to t~, and even 

for s _ cf(~), 0 < Is I < R0, (Min(Nsu{¢} - N,) : max(s) < ~ < cf(t~)) 

increases and converges to ~. 

(6) I f  I s~l = Is21 -- Is31, I stl -- m then h,,.~, = h,~ 3 o h~,,~ 2. 

(7) hs., = h3  ~ • 
(8) hs,t r N ~  = id. 
(9) I f g  is an order  preserving function f rom s onto t, s E l ,  t E l ,  s~ ___ s, 

t2 = g"(sO, then h~,.,~ c_ h,.t. 
(10) 0¢ -- Min(N~q - N~). 

(1 1) We can allow the functions to have < i t  places if  It <u < i t + .  

REMARK. For  ;t measurable we really can have ~ = 2. 

PROOF. Easy (or see [Sh 3]). 

2.8. THEOREM. Assume it = It <~ < 2 < X, 2 is the first strongly inaccessible 

ErdOs when It = R0, measurable otherwise 2 > It and ;t = )C ~ > 2. 
Then we can get the conclusion of  2.1. 

We delay this tO part  II. 

2.9. THEOREM. ]n 2.1 we can add (e) i f  It = Ro : []-e "MA~"  and i f  It > R0: 

[[-p " i f  Q is a forcing notion of  cardinality It+, satisfying ,[ i t] ,  
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and D~ c_ Q is dense for i < i ( , )  < cfjt, then there is a directed 
G c_ Q not disjoint to any D~". 

PROOF. Same for/~ = Ro; for/ l  > R0 see [Sh 2]. 

2.10. DiscussioN. We can replace, in 2.9, RI by/1" > R~ (except in 2.1 (3')) 

but then we need few changes - -  II N;' II {i: i </t*} _c N~', and so in 2.7 
we also consider/~* instead of/~. 

§3. Generalizations of the Todorcevic Theorem 

3.1. THEOREM. Suppose 2 is regular > R0, S c A a stationary set, not 
reflected. Then ;t-/-[2 ]f. 

EXAMPLES. RI, successor of regular, (a + 1)-Mahlo not (a + 2)-Mahlo are 

such cardinals. If 0 # does not exist there are lots of  cardinals with such S (e.g., 

any successor of  singular cardinals). 

PROOF. For each i < 2, i ÷ 0 we choose ase t  Ci __. i such that: 

(1) i f / i s  a successor then Ci = {i - 1, 0}, 

(2) if  i is limit, let C; be a closed unbounded subset of  i, disjoint to S, 0 E C~, 
successors in C~ are successors in 2. 

Note: if ~ ~ S, 0 < i < 2 then ~ ~ C i ¢=*. i = ~ + 1. 

We can partition S to 2 pairwise disjoint stationary subsets (of A) S t (~ < 2) 

so S = St. 
Now we define the coloring: a 2-place function d from 2 to 2: 

For any a </~ define a yt + (/~, a), 77(//,  a) by induction on l: 

(a) yg(# ,  a) = 8,  y~-(#, a) = O, 
(b) ifyl + (/~, a) is defined and > a let Yt~-~(P, a) be the first member of Cr,+¢p.a ) 

which is > a, and ~'tq-~(P, a) be the last member of  the closure of  

n .1, 
[i.e. last member of  Cr,+¢p., ) which is < a, if  there is one and a otherwise]. Next 
let k = k(fl, a) be the first k such that yk + (fl, a) ---- a. 

Note that 

(.) if2 > p  > a > 0, for m < k(//, a), y,,7 (fl, a) < a < r.+(#, a) and for m = 

k(#,a), 3'g (#, a) < a = 3'~(#, a), and [r,?, (/~, a) -- a i f fa  is an accumu- 
lation point of  Cr +¢p.,)]. 

Suppose a < p ,  m < k(]/, a); let 

e = em(fl, a) = Max{y7 (1~, a) + 1 : l < m}, 

then e _-< a + 1 and clearly 
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(**) ~'t + (fl, a) ---- ~'t + (fl, ~), 7t- (fl, a) = 7F (fl, ~) when ~ < ~ _-< a for / _-< m. 
We define d: 

suppose a<fl, let m<=k(fl, a)be maximal such that: 
def 

e =  e,~(fl, a ) < a ,  7F(a ,e )=Yl - ( f l ,  e ) for l < m  and 
y~(fl ,  a ) ~ S ;  now let d(fl, a) be the unique ~ such that 

I f  this does not define d(fl, a) then let d(fl, a) = O. 

Suppose Y __c_ 2 has cardinality 2, and ~ < 2. We shall show ~ E Rang(d r Y). 
Let M be a model with universe 2 and the following three relations: x < y, 

x E Y ,  iECj .  
Let Ni (i < 2) be increasing continuous sequence of  elementary submodels of 

M, II N, II < , l  and i ENi+ ~. We can find a limit 8 ~S¢, such that N6 has 
universe 8. Choose fl E Y, fl ~ N~ + ~. So k(fl,  ~) is well defined and > 0. Let 

d e f  
e = 

We claim that e is < ~. Why? If  I < k(fl,  ~) then by (*) 71- (fl, ~) < ~, and as t~ 
is a limit, 7~- (fl, ~) + 1 < ~. Suppose l = k(fl ,  ,~), 7t- (fl, ,~) is < t~, if equality 
holds then by (*) (as 7~ +_ ~(fl, ~) > ~) t; is a point of Cr~_,tp.6), but then (as ~ E S) 
7Ll(fl ,  ~) (which is > J) cannot be a limit ordinal. Hence 71+_m(fl, ~) is a 
successor ordinal, so it can be only ~ + 1. But then easily Cr~_,ta,a) = (~, 0}, 
hence 7F (fl, ~) = 0 < ~. So even if I = k(fl,  ~), 7t- (fl, ~) < J so again as ~ is a 
limit ordinal, ~'t- (fl, ~) + 1 < J. By the definition of ekta.~)(fl, ,~) we can con- 
clude that it is < ~. 

Remember  e = ek(fl,8)(# , ~).  

Let the formula ~o(x, y ) =  ~(x,  y ,  e, yl-(fl, t~))l<kt#,~) say that: y is limit, 

x ~ Y, e < y < x ,  71- (x, y)  = Yt- (fl, ~) for l < k(fl ,  ~) and 7k~a.~)(X, Y) = Y. 
This is a first order formula with parameters from N~ and M ~ ~0(fl, 8). As 

~N~, 8 ~N~+~, fl 6N~+~ clearly 

M I~" V y  ~ y ' > y  V x  ~x '>x~o(x ' , y ' ) .  

Hence for some ~' < f l '  in N~, M ~ ~,(fl', ~'), ~' > ~, e and the interval (~', fl') is 
not disjoint to G .  

By (**), we can prove by induction on l < k(fl ,  ~) that 7 f ( f l ,  f l ' )= 
7~ (fl, ~) = 7~- (fl, e), et(fl, fl') = e~(fl, ~) < e, and 7~ + (fl, fl') = 7t + (fl, ~) = 

r? (#, 
So + 7kt~.~)(fl, fl')=tL By the choice of (fl',~'), e.g., for /_-< 
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k(fl ,  6) : 7/- (fl', 6') = 7:  (fl', e) = 71- (fl, 6), ~'k~#.6)(fl,+ ' 6') = 6'. We note that 
k(~, fl) satisfies the requirement on m in the definition of  d. 

Now for l = k(fl ,  6) + 1, 7F (fl, fl') is the last member of the closure of 

fl' N C6, so as (6', fl') N C6 ~ ~ , it is > 6'; hence 7/- (fl, fl') cannot be equal to 

7t(fl', et(fl, fl')) as the latter is _-< 7t-l(fl', el-l(fl ,  f l ' ) )= 6'. So easily every 
m'  > k(fl ,  6) + 1 does not satisfy the requirement on m in the definition ofd .  

So in the definition of d(fl',  fl), m is k(a, fl) and 7£ (fl', fl) is 6, and as 6 E S¢ 

we finish. 

3.2. OBSERVATION. If2 is regular > R0, S C_C_ 2 stationary not reflected then 
2-/'[2; 2, ;t] W.  

3.2A. EXPLANATION. Remember ;t ~ [2; 2; ;t]u 1,1,) means that for some 

3-place function d from ;t to/l, there are ~ </~ and pairwise distinct ordinals a~, 

fl~, 7~ (i < 2 )  such that 

il < i2 < is < 2 =~ d(ai ,  fli, 7i) ~ ~" 

PRooF. Let C~(a < 2 ) ,  S¢(~ < 2 ) ,  71+(fl, a), ?F(fl ,  a), k(f l ,  a), em(fl, a) be 

as in the proof of 3.1. 

We define a 3-place function from 2 to 2: i f ,  < f l  < 7, and m < k(?, fl) is 

maximal such that: 7t-(7, a ) =  ?F(7, fl) for l < m and ~,~(7, a)~S~ then 
d(fl,  a) = ~, otherwise it is zero. 

Let for I = 1, 2, 3, Yt = { Y~ "a < 2 } __. 2, y~ increasing in a and let ~ < 2. We 

should find a < f l  < 7 < 2 such that d(y~, y~, y3) = ~. 
Define M as in 3.1 but with the predicates x E Yt for l = 1, 2, 3 and also N~ 

(i < 2) and 6 will be chosen as in the proof of 3.1. 

Choose 7E Y3, 7 ~Na+ ~. Let k = k(7, 6) and e = ek~v.~)(7, 6); now as in the proof 

of 3.1 e is < 6. Now choose a ~ N~ tq Y~, a > e and then choose fl ~ N6 t3 Y2, such 

that not only fl > a but (a, fl) A Ca = J~. Now d(a, fl, 7) = ~. 

3.3. THEOREM. (1) Suppose 2 is regular >R0, 0 < 2  regular, S C 
{6 : 6 < 2, c f6  --- 0} is stationary not reflecting in any inaccessible, tr < O, and 

for  every regular cardinal x in the (open) interval (0, 2), x-/,[O], <'°, then 

(2) Suppose ( 0~ : i < i( . ) ) is an increasing sequence o f  regular cardinals < 2, 

2 regular ( >  R0) and for each i, S~ c_ {6:6  < 2 ,  cf6  = 0~} is stationary not 
reflecting in inaccessibles ( < 2), S~ N Sj = ~ for i v~j and 

( V x )  (x regular Ax < 2 =~ x-/-{[0j]o< '° : Oj < x}) 

(see below Definition 3.4). 
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Then 2-3[2] 2 where tr = Zi<i(.) ai. 

(3) In part (2) i f  ;~ = tr + we can conclude 

even 2-312]a 2. 

(4) Suppose in (2) we replace 

( V x) (x regular Ax  < 2 =* x--P{[0j]~'°: Os < x}) 
by 

(Vx )  Ix regular Ax < 2 =* x-3{[0j]o< °' : j  EA~}]. 

The conclusion still holds i f  
( . )  for every j < tr there is xo < 2  regular such that: 

[x0 < x < ;t ^ x -- cf  x =*j  ~A~]. 

3.4. DEFINITION. g--/~{[0j]a <t° : j  < j ( . ) }  means  that  there is a funct ion  F 

f rom [x] <,o[ def {W C_ X "l W I < R0}] to x such that  for eve ry j  < j ( . )  and  A ___ x 
o f  cardinal i ty 0j, {F(w) : w ~ [A ] <o, } includes trj. 

3.4A. REMARK. Note  that  in 3.3(2), the condi t ion  x-3{[Oj]o7 °'' 0j < x} is 
trivially satisfied when trj < R0 f o r j  < i ( . ) .  

PROOF OF 3.3. (1) Follows by (2). 
(2) For  each regular x < 2 there is a funct ion  g~ f rom [x] <~' to x exemplify- 

ing x-3[Oj]o~ °' whenever  0j < x (or, for 3.3(4): j EA~). For  each i, 0 < i < ;t 
choose C~, such that: 

(a) i f  i is a successor ordinal,  Ci = {i - 1, 0}; 
(13) if  i is a l imit  ordinal,  cf  i < i, let Ci be a closed u n b o u n d e d  subset of  i o f  

order  type eft/), 0 E C~ and  cf(i) < Min(Ci - {0}) and  an ordinal  which is 
a successor in C~ is a successor in 2; 

(7) i f  i is an inaccessible cardinal  C~ is a closed u n b o u n d e d  subset of  i 
disjoint  to 

S def I..J{Sj :j  < i(*),j  < i}. 

(8) i f  i is a regular cardinal  but  not  inaccessible, it is a successor cardinal  so 
we can find a d o s e d  u n b o u n d e d  C~ __. i such that  

a ~ C i  ^ a >  O==, lal +=- i. 

W.l.o.g. S~ tq (i + 1 ) =  ~ for each i, hence S does not  reflect in any 
inaccessible cardinal.  
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Now for a < f l ,  a > 0 we define by induc t ion  on l, ~,t+ (fl, a), 7f( f l ,  a), and  
then  k(fl, a), e(fl, a) (note that  in addi t ion  to the use o fg~we have some mino r  
differences f rom the p roof  o f  3.1). 

(A) 70+(fl, a) = fl, 7o(fl ,  a) = 0. 
(B) I f  ~'t + (fl, a) is defined and  > a and  a is not  a l imit  po in t  o f  Cr,+(p,, ) then  

we let 71++ ~(/~, a) be the min ima l  m e m b e r  of  Cr,+(~.~ ) which is > a and  let 
7A~(fl,a) be the maximal  m e m b e r  o f  Cr,+(p,, ) which is < a (by the choice 
of  Cr,+(p,, ) and  the d e m a n d s  on 7t + (fl, a) they are well defined). 

Otherwise  ~'~l(fl, a), 7t~-,(fl, a) is undefined.  
So 

(B~) (a) 7f (# ,  a ) < a  _-< 77(#, a), 
(b) 3't~-~ (fl, a) < rt + (fl, a) when  both  are defined. 

(C) Let k = k(fl ,  a) be the maximal  n u m b e r  k such that  7k + (fl, a) is defined 
(it is well defined as (yl + (fl, a) : l < k )  is strictly decreasing). So 

(c , )  r~p,o~(#, ~) = 
or 7k~p,~) > a, 7k~p,~) is a l imit  ordinal  and  a is a l imit  po in t  of  Cr +~,,,~p,~ ). 

(E) Let for m _-< k(fl ,  a): 

em(fl, a) = Max{yt-(f l ,  a) + 1 : 1 < m}.  
Note  

(El) (a) em(fl, a) ~ a (if defined) and  
(b) I f  a is l imit  then  em(fl, a) < a (if defined). 
(c) If  em(fl, a) ~ ~ <= a then for every l _-< m 

y? (#, ~) = ~'? (#, ¢), ~f  (#, ~) = ~f  (#, ¢), et(#, ~) = e~#, ¢). 

[Explanat ion for (c): if  •m (~,  O/) < O~ this is easy (check the definit ion) and if  
em(fl, a) = a, necessarily ~ = a and  it is trivial.] 

(d) I f  I < n then et(fl, a) <-_ en(fl, ~). 
(F) Let n(fl, a) be the maximal  n ~ k ( f l ,  a) such that  for l ~ n ,  

7;- ('~, el(#, ~)) = ~'f (#,  ~). 
(G) Let e(fl, a) = e,¢p,~)(fl, a). 
(GO For  0 < a < fl < 2, clearly (a) n(fl ,  a) >_- 0 is well defined, and  (b) when  

a is a l imit  e(fl, a) < a. 
Let  us par t i t ion Si to ai pairwise disjoint  s tat ionary sets, S~,j ( j  < ai). Now we 
define the funct ion 

d : [ ~ ] 2 - - - a =  Y, % 
i<i(*) 

3.4B. DEFINITION. We define d(fl, a), a < f l ,  by cases, lett ing n = n(fl, a). 
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Case I. There are ordinals ¢, ~, i a n d j  such that: 

(i) ~ < ~ <  ~ < 7 : ( f l , - ) ,  
(ii) Sup[Cr:¢#,~ ) n ~] = Sup[Cr:~,,z#,~)) n ~], 

(iii) Cy+~#,~) N [~, ~] = Z~, 

(iv) 7~(fl, a )eS~j .  
Then let d(fl, a) = j .  

Case 2. Not case 1, 0 < a < fl but 7~ + (1~, a), 7~ + (a, e,(p,  a)) are limit and 
the set w defined below is finite. Let 

i(*) = sup[Cr:¢a,~) N Cy +<~,,z#,~))]. 

Let E be the following equivalence relation on Cy +<#,a ) - i ( , ) :  

7~E72 ~ (V 7 ~ Cr.÷<~,,.~a,j[7~ < 7 ----- 72 < 7]. 

We assume that the set 

dcf 
w = {7 ~ Cy:~#,a) : Y > i(*), 7 = Max(y/E)} 

is finite (really, if it is infinite, its accumulation points are in the closures of  

Cr +~#,a ) and of Cr:~,~a,a))).  
We let d(P,  a) - gK(w') ifgK(w') < a, zero otherwise, where 

x = c f ( 7 :  (# ,  = I 

and w' is the image of w under the Mostowski collapse Cole,:(,,) (of Cr +(#,a)). 

Case 3. Not cases 1, 2. 
Let d(//,  a) = 0. 

Now suppose that Y C_ 2, I Y I = 2, and d < a. We shall find a < fl in Y such 
that d(p ,  a ) =  d. Suppose d < try, let M be a model with universe 2 and all 

relevant relations and functions (countable many). Let (N i : i  < 2 )  be a 
sequence of  elementary submodels of  M, strictly increasing and continuous, 

II Ni II < 2, the universe of  N~ is an ordinal, and not a successor cardinal. 

Choose 3 ~ S~,a such that IN61 = tL Choose 1~ E Y,/~ ~ N6 + ~. Let n = k(/~, t~). 

Let e = e(fl, ~) (which is < ~, see (G0(b)). 

Case A: 7~+(#,~)=~.  
Now ~ is singular (as it ES~) hence C~ has order type < 3, so we can easily 

(as in the proof  of Theorem 3.1) find p ' < O  in Y such that case 1 of  the 
definition of  d(p,/~') applies and d(]~, ]Y) = d as required. 

Case B. Not case A. 
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Then necessarily ~ ~ G(.) where ~(.) da ?+ (fl, ~). AS ~ E C6(.), cf~(*) > 

IGI  > cf~ -- 0,. (cf~ -- 0; as ~ ES~,d). Hence ~(.) has cofinality > 0~. So 

C~<.) n s ~ C6<.) n 8,.,~ ÷ 

hence (by (7) above) c f ~ ( * ) <  ~(*) hence (by (fl) above) G(.) has order type 
< Min[C6( , )  - {0}] < ~. Hence (as I N~ [ = ~): 

D -- {~E C6(.) : ~ < ~ ,  for some ~ < ~  

= Sup(C6(.) N N~) -- Max(C6(.) N N~) 
and ~ -- C6(.) M ( I N ~ + l  I - -  IN~ I)} 

is unbounded below ~ hence has power > of 6 = 0~. By the choice of  g, (where 
def 

x = eft(*))  it is enough to show: 

~) for any ~ < ~1 < " '"  < ~p from D, ~t a witness for ~t E D ,  i fe (p ,  a) < ~0, 
then for some fl'~N~,+~ 

n(//,  p ')  = n = k(#,  6), e,(]/, p ')  = e,(]/, a) = e, 

Crq,,,.,(p,, ) satisfies: ~0 belongs to it, it is included in 

~0 U [IN¢,+~I-  IN¢,I] U . . .  U [INc,+~I-  INc, I] 

and is not disjoint to any 

IN¢,+~I - IN¢,I f o r q =  1 . . . . .  p. 

Now ~ is quite easy by definition of elementary submodel. 
(3) Let ( h ~ : / / < 2 )  be such that: h~ is a function from a onto 1/. We now 

define a coloring d '  (where d comes from the proof  of part (2)): for a < 1 / <  2, 
d'(#,  a) = h#(d(#, a)). 

Why is d '  as required? So let Y ___ 2, I Y I = 2, d '  < 2 and we shall find a < ]/ 
in Ysuch that d'(fl, a) -- d'. Let M b e  a model with universe 2 and all relevant 
relations and functions. Let (N~ : i < 2) be a strictly increasing continuous 
chain of elementary submodels of  M such that I N~ I is an ordinal. For every 
pair (i, d), i < i ( . ) ,  d <cr~ choose c~,a~S~,a such that N~,,, has universe c~,a, 
clearly y = U{c~,a: i < i( .) ,  d < cry} is < 2 so there is ] / ~  Y such that (fl > y 
and) fl ~Nr+~. Choose d < a such that h#(d) = d' (h# is from a onto r )  and 
choose i < i ( . )  such that d < cry. Let c~ -- ~,,a and continue as in the proof  of  
part (2). 

(4) Same proof  as part (2). 
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3.5. CONCLUSION. (1) E.g. ifni < o9, A~<o, 3 m(Vj > m)Rj-/-[R~,]~<, °' then 

(2) 2 +-/-[;t +]~0. 
(3) If2 is an inaccessible not Mahlo then 2-/*[4]~ o. 

~+._~r~+12 
( 4 )  o~, r t, 'o, ,J~,.  

PROOF. (1) By 3.3(2) Ro~+ 1"~[~¢o + I] 2. (just let m < 09, gin" o,> [Rm] ~ Rm be 
such that for every l < k < o9, if Rm@[Rk]~" then for every A __. Rm of  
cardinality Rk, Rt _c {gin(w) : w a finite subset of A }). 

The stronger version Ro,+ l--/'[Ro, 2 + l]s,o + i follows by 3.3(3). 
(2) Follows by 3.3(1) applied to S = {J: J < 2  + is limit >A}.  
(3) Follows by 3.3(1) applied to S, a club of;t consisting of singular ordinals. 
(4) Follows by 3.3(4) if X < Ro,, is regular; let x = Ri+l and, e.g., gk(w) = 

h/( I w I ) where h/is a one-to-one map from o~ onto j + 1. 

3.6. OBSERVATION. Under  the assumption of  3.3(1) 2-/'[2; 2; 2] 2. Simi- 

larly for 3.3(2), (3), (4). 

PROOF. Combine the proof  of 3.2, 3.3. 

3.7. CLAIM. Let 2 be a Mahlo cardinal, Sin be inac(2) da {X < 2 "  X inac- 
cessible}. For C __. 2 let lim(C) = {J ~ C:  J = sup(6 n C)}. 

Let C~ denote a club of  r .  Then the following statements are equivalent: 
(1) For every (C~: rESin) for some club C* of  2, ( V J  < 2 )  (3xESin )  

[c* n a c G n J ] .  
(2)- For some stationary A __. 2 for every ( C~ : X E Sin) there is a club C* of  2 

such that: 

( V J E lim C* n A)( 3 r E Si.)[J E lim C~ ^ sup(C* n J - C~) < J]. 

(2) + Like (2)-, for every stationary A. 
(3)- For some stationary A c_ 2 for every (C~ : x E Sin) there is a club C* of 2 

such that: 

(V J ~ lim C* n A)( 3 x ~ Si,)[J E lim C~ and for every large enough 

iEC* n J, Min[C~ - (i + 1)1 < Min[C* - (i + 1)]1. 

(3) + Take (3)- for every stationary A. 

PROOF. (1)=* (2)-, (2) +, (3)-,  (3) +. Trivial (use the set of  limit point of  the 

C* given for (C~: KESi~) by (1)). 
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(3 ) -  =, (2)-. Let A _C 2 be a stationary set exemplifying (3)- and we shall 

prove that it exemplifies (2)-. So let ( C~: x E Sin) be given, and we should find 
a club as required in (2)-. 

Let C ' b e  a club of 2 as guaranteed in (3)-: i.e. 

let 

(v6 C* n A)( 3 x ~ Sin)[6 ~ lim C~ and for every large enough i E C* O 6, 

Min[C~ - (i + 1)] < Min[C* - (i + 1)]]; 

C** = {6 E C* : 6 a limit ordinal and 6 = sup(6 o C*)}. 

We shall prove that C** satisfies the requirements in (2)-. 

So let 6 E lim(C**) n A be given. Clearly 6 E C* O A. So by the choice of  C* 

( 3 x E Sin)[6 El im C~ ̂  for every large enough i E C* n 6: 

Min[C~ n 6 - (i + 1)l < Min[C* - (i + 1)11 

and let x exemplify it and let "for every large enough i" means i > i(6). It 
suffices to prove 

6 ~ l i m  C~ ^ Sup[C** n 6 - C~] < 6 .  

The first conjunct we already know. For the second we prove 

Sup(C** n 6 - C~) < i(6). So suppose e E C** n 6, e > i(6). As t ~ C**, e -- 

U ¢<~f, e¢, e¢ > i(6) strictly increasing, e¢ ~ C*, and so deafly e¢ < 6. By the 

choice o f x  [using e¢, as i] [re, e~+~] n C~ ~ ~ for each ( < c f e  hence e~C~ 
hence e ~ C** n 6 - C~. We have proved (C** n 6 - C~) ___ i(6) as required. 

( 2 ) - ~ ( 1 ) .  Let (C~:x~Sin) be given. Choose A __c2, a stationary set 
exemplifying (2)-. Applying (2)- to (C~: x E Sin), we get a club C* of  ;t such 
that 

(V6~C* n A)( 3 x ~Si.)[6 El im C~ ^ Sup(C* n 6 - C~) < 6 ] .  

For a (limit) ~ E C *  AA let to6 ES~n and h ( 6 ) < 6  be such that 6~C~, and 

C* n 6 - C~ _.c h(6). By Fodor's lemma for some stationary B ___ A O C* and 

7 < 2 ,  (VJ~B)[h(~) = 7]. Let C** = C* - 7. So C** is a club of  A, and for 
every 6 < 2  there is 6~ ~B ,  6~ > 6, so (letting x = K6,) 

C** O 6__ C* O 6 -  7--  C* n 6 1 -  7 

= C* n 6~ - h(6,) _ C~ n 6, - h(6~) _c C~ n 6~ 

hence C** n 6 _c C~ n 6 as required. 

(2) ÷ ~ , (2)- .  Trivial. 
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(3)+=*(3) - . Trivial. 

3.8. REMARK. (1) I f2  is weakly compact, 3.7(1) holds. 

(2) I f g  < 2 ,  2 satisfies (1) of  3.7 and P is a forcing notion satisfying the 
g+-c.c, then in V e 3.6(1) still holds for 4. 

3.9. CLAIM. If  2 is Mahlo, S~_ 2 is stationary for i < 2 ,  and for no 
inaccessible x < 2 (V i < x)[x n S~ is stationary], then 3.6(1) fail. 

3.10. REMARKS. (1) Saying that the set of such xis not stationary makes no 
change, as we could have shrunk the S:s .  

(2) By a result of Magidor [Mg], 3.9 implies: i f 2  satisfies 3.6(1) then 2 is 
weakly compact in L.  

PROOF. For x ESm = (x < 2 : x inaccessible} let h0c) < x be minimal  such 
that  r N Sht~) is not stationary, and C* be a club of  r disjoint to Sht~), and to 
(h(r) + 1). Suppose C* c_ 2 is a club as guaranteed for (C~: ~c ESin) by 3.7(1). 
As r is Mahlo and S~ n C* is unbounded in C* for each i (being stationary) 
deafly C -  = {c~ < 2 : c~ > 0 and for i < c~, S~ n C* has order type c~ } is a club of 
4. 

Choose ~ ~ C -  so for some r ~ Sin, C* n t~ _C C~ n c~. 
Now C* n c~ ~ ~ (as ~ C - )  hence C~ t~ t~ ~ ~ ,  hence h ( r )  < Min C~ < 

tS. This implies C* n Sht~) n c$ ~ ~ (as t~ ~ C-) .  However C~ n Sht~j = O ,  
contradiction. 

3.11. THEOREM. Suppose,for a Mahlo cardinal 4, that 3.7(1)fails and: 
(a) (S~ : i < or) are pairwise disjoint stationary subsets o f  2, ~ <-_ 4; 
(b) C + c_ 2 is a club consisting o f  limit cardinals; 
(c) for each inaccessible lc < 4, there is a function g~ : [~c] <o, ~ cr and club 

C~ C_ r. such that: if i < t L  i <t~ <ic ,  ~ C  ~ n C + AS~, and Y C_ ~ oJ 
cardinality t~ then i ~ {g~(w) : w E [Y] <co}. 

2-/-[2]g. 

We can get also 2 ~ [ 2 ;  4; 2]2. Remember  Sin -- {r < 4 "  r 

Then 

3.12. REMARK. 
inaccessible}. 

PROOF OF 3.1 1. Like 3.3. 
W.l.o.g. [o < 2  ==)a < Min C+], Si ¢h (i + 1) = ~ ,  Si C__ C +. As 3.6(I) fails 

also 3.6(3) fails for A _C S~ (which is stationary), so there are (C~ : xff.Sin) 
which exemplify the failure of 3.6(3) for S~. 

We now choose C, for a < 2 as follows: 
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(a) Co = ~ ,  G+,  = {0, i}; 
(13) i f a  = t~ is singular ordinal (i.e. cf5 < ~) C6 will be a closed unbounded 

subset of 5 of  order type e f t ,  0~C~, c f t ~ < M i n ( C 6 - { 0 } )  and 
(Vi  EC6)[i ~ Sup(C6 n i )= . (3 j ) ( i  = j  + 1)l; 

(~/) suppose a = x E S i .  n lim(C+), let C~ be (x n C +) n n i < .  C~ ~ if a < x 
and let C a b e x  n C + n {t~ < x :  t ~  n;<6 C~} i f a > x  

[equivalently if a = 2]. 
Let 

C~ = { i : i  = O o r i  =Sup( i  O ca)ECaor  
(3 j~Ca) [ ( i  = j  + 1 ̂ j  > Sup(j n ca)]}. 

[The last part in order that every limit ordinal in Ca will be an accumulation 

point of Cal. 
(5) If  a = x E S i n - C  +, let C K C x  be a club, 0EC~, M i n ( C ~ - ( 0 } ) >  

Sup(x n C +) and ( V i ~ C~)[i :P Sup(Ca n i) ==, ( 3 j)(i = j + 1)]. 
For the rest of the proof see the proof of 3.3. 

3.13. REMARK. In 3.7 the equivalence holds for each (C~: xESin) se- 
parately. 

3.14. LEMMA. Suppose 
~ S  C_ ;t is stationary, [t~ E S = * c f ~  = 0]. 

S does not reflect in any inaccessible 2' < 2~, and for every regular x E(O, 2) 
( * )~,o there is g~ : [x] <,o __, x such that: i_f A c_ x, IA I = O, A closed under g~, 

cf(sup A) = 0 then A includes a club of  (sup A). 
Then 27¢[2] 2. 

3.14A. REMARK. The condition (*)~,0 holds if there is no inner model with 
large enough Erd6s cardinals, by Magidor covering theorem [Mg2] (i.e. if 
x > 0 > R0, and in the inner model K, x~(O)~ °' then (*)~,0 holds). 

PROOV. Like the proof of 3.3; let ~¢ = (S~ : ~ < 2) be a partition of S to 
pairwise disjoint stationary subsets. Now note that w.l.o.g, for each (, 

F(S¢) = {~:~ < 2 ,  S¢ n ~ is a stationary subset of~} 

is a stationary subset of 2 (otherwise apply 3.1 ). So as F(S¢) has no inaccessible 
member we have for some 0¢, 

S~ =- (~: ~ < 2 ,  cf~ = 0¢, O~F(S¢)] 

is stationary. 
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In the definition of  the coloring d, is case 1 we replace (iv) by 
(iv)' 

(and then let d(fl, a) --j) .  
In case 2, we let • = cf(~, + (fl, a)) which is equal to ] Cy.÷t~,,) I, and we let g' be 

a function from the family of  finite subsets of  Cy.÷tp,a ) into Cr+tp.~ ~ such that 
[Cy.*tp,~), g'] ~ (r, gK), and let d(fl, a) be the unique ( such that g'(w) belongs to 
S¢. The rest is similar (but for the color d we use ordinals in S); provided we 
arrange gK such that 

(,) for everyA _ K, (g~(w) : w C_ A finite} includesA and is closed under g~. 
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